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PREFACE

During the academic year 1908-9 the author was privileged to give as a

part of his work at the University of Michigan a course of lectures on infinite

series, with especial reference in the second semester to divergent series— a

subject which, despite the uncertain value so long attached to it, seemed clearly

to be coming into increasing prominence and importance in mathematical

analysis. Little was accomplished, however, as regards divergent series beyond
the merest beginning; yet this was sufiicient to awaken a desire to continue

farther and this in turn resulted in a course being given throughout the whole

of the following year devoted entirely to divergent series and the related topic

of summability. But this year also closed with much less ground satisfactorily

covered than had been expected, unforeseen difficulties having arisen from time

to time, some due to the inherent complexities of the subject in hand and others

to the somewhat hastily conceived and hence unsatisfactory state in which

much of the related literature was found to be. Thus the course still seemed

altogether incomplete. It was therefore decided to continue it once more
throughout the following year, 1910-11, and indeed for a like reason it was

finally continued throughout 1911-12. As the lectures and class-room dis-

cussions progressed, permanent notes were kept in the hope that the whole might

possibly pass through the press at some future time and appear in book form

—

a hope which, after various delays during which the original notes have been

considerably supplemented, now reaches its realization in the appearance of the

present volume. In its final form it certainly presents a large mass of detail

and is doubtless open to criticism in many respects, but it does not seem advisable

to attempt any further defence for it than is contained in the remaining sections

of this preface wherein, after certain generalities, the content and motive of the

various chapters are discussed in some detail.

Speaking roughly, the study of divergent series, at least as the author has

come to conceive of it, may be divided into two parts, the one concerning the-

so-called asymptotic series and the other the theory of summability. Of these the

first, representing the older aspect, originated in an isolated note by Cauchy
in 1843^ relating to the well-known series of Stirling for log T(x), viz.:

(1) \ognx) = ilog2r+(x-i}logx-x+^'^l- §^^^, + ^l^,-
....

{Bm = mih Bernoulli number.)

Cauchy pointed out that this series, though divergent for all values of x, may be

1 "Sur I'emploi legitime des series divergentes," Coinpt. Rend, de I'Acad. des Sciences, Vol. 17,

pp. 370-376.
vii



viii Preface

used in computing log r(.r) when .-r is large (and positive)—in fact, it was shown

that, having fixed the number n of terms taken, the absolute error committed by

stopping the summation at the 7ith term is less than the absolute value of the

next succeeding term, and hence becomes arbitrarily small (n > 3) with in-

creasing X. Cauchy's work on divergent series was confined, however, to the

single series (1) and, owing to the emphasis placed upon convergent processes

exclusivel}' by the successors of Cauchy and Abel, no further progress was made

in this interesting field until the subject at last reappeared after more than forty

years in connection with the researches of Poincare upon the irregular solutions

of linear differential equations.- Poincare considered those divergent series

(normal series) of the form

„ , , / . , „ . s fix) = volynomial in x,

which for some time had been known to satisfy formally linear differential equa-

tions of certain types having the point a: = oo as an " irregular " point, and he

showed essentially that in general to every such formal solution there corre-

sponds an actual solution which can be represented by (2) in much the same sense

as (1) was described above as representing log T{x)} In view of the important

significance of such results both from the standpoint of the possible use of di-

vergent series as well as from that of the theory of differential equations, Poin-

care set apart and discussed in some detail a broad class of divergent series of

the special form (2), applying to them the name of " asymptotic series." PoiN-

care's results, however, in so far as they concerned differential equations, were

noticeably incomplete, being limited by certain unfortunate restrictions, and thus

his original studies have given rise in later years to numerous researches, notably

by Horn, in which noteworthy advances have been made, though open questions

in this connection still remain. Corresponding investigations (likewise begun by

Poincare) pertaining to linear difference equations have been undertaken in

recent years and carried to an advanced stage by Horn, Norlund, and others.

Meanwhile an important aspect of the theory of asymptotic series has come into

\'iew, especially in England under the leadership of Barnes and Hardy; namely,

that of actually determining the asymptotic developments of a given function

—

a problem of decided interest for the study and classification of functions in gen-

eral. This latter aspect of the subject presents a high degree of complexity

and doubtless has made hardly more than a beginning at the present time. In

fact, it has thus far been approached only by confining the attention to a very

limited number of special functional tj^T)es.'*

* "Sur les intdgrales irregulieres des Equations lin(5aires," Acta Math., Vol. 8 (1886), pp. 259-

344. Mention should be made also of Stieltjes who simultaneously with Poincare resumed the

study of divergent series, confining his attention, however, to the computational aspects of certain

special series. (Thesis, Ann. de I'Ec. Nor. (3), Vol. 3 (1886), p. 201.)

' For the more accurate statements, see Chap. III.

* For details, see Chap. II.
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The theory of summability, or second general aspect of divergent series

mentioned above, is essentially concerned with the question as to whether in

any proper sense a " sum " may be assigned to the series, assumed divergent,

(3) Han.
n=Q

This question has been scientifically attacked only within comparatively recent

years, the most common avenue of approach being through the so-called boun-

dary-value (Grenzwert) problem in the theory of analytic functions.^ Thus

Frobenius, without having in view the study of divergent series, showed in the

first place that if one has a power series whose radius of convergence is equal to 1

:

(4) XI (inX'^ ',
^ = radius of convergence = 1

n=0

and writes Sn = ao -{- ai -\- •••+««, the

00

(5) lim HanX^ = lim

and writes Sn = ao -{- ai -\- •••+««, then

-^0 + ^1 + • • • + ^n

a;=l— n=0 m=oo 71 -p i

whenever the indicated limit on the right exists.^ Now, the first member of (5)

is naturally associated with the corresponding series (3) (in general divergent)

obtained by placing x = 1 in (4). Thus, at least if one confines the attention to

divergent series (3) of the particular type just mentioned, it becomes natural to

assign sums in accordance with the formula

,. 5o + *1 + • • • + Sn

(6) * = !™—^+1 •

whenever the indicated limit exists. Moreover, this formula finds additional

justification in the demonstrable fact that for any convergent series (3) the sum,

regarded in the ordinary sense, viz., s = lim Sn, agrees with that given by (6)

—

w=oo

i. e., formula (6) is consistent Aside from this one formula (6) many others are

now known which serve with more or less appropriateness to define the sum of a

divergent series, both when the series is of the special type above mentioned and

when otherwise. To what ultimate extent these formulas are appropriate, how

far the theories of summability erected upon them serve any justifiable purpose

in analysis, whether the different sums thus assigned involve mutual incon-

sistencies—these and other questions may well be asked and more will be said on

this point presently.'' Suffice it to say here that formula (6) has been found in

6 For an elementary description of the problem, see Jahuaus, "Das Vcrhalten der Potenz-

reihen auf dem Konvergenzkreise historisch-kritisch dargestellt." Program des Gymnasiums

Ludwigshafen (1901), pp. 1-56. See also Knopf, "Grenzwerte von Reihen bei der Annaherung

an die Konvergenzgrenze." Dissertation, Berlin, 1907.

6 "Ueber die Leibnitzschc Reihe," Jour, fur Math., Vol. 89 (1880), pp. 2G2-264.

^ Interesting comments by Pringsheim relative to such questions are to be found in Vol. I

of the "Encyklopiidie der math. Wissenschaften," §§ 39-40.
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particular to yield interesting and valuable results when applied to Fourier series

and the other important allied developments in mathematical physics— develop-

ments in terms of Bessel functions, Legendre functions, etc. Such applications

alone go far toward assuring a permanent place in analysis to the theory of

summability as now commonly understood.

Turning now more specifically to the contents of the present volume. Chapter I

considers certain aspects of the so-called Maclaurin Sum-Formula, the especial

aim being to develop and summarize into actual theorems those results which

are of importance in this connection to the study of divergent series. These

when once obtained are of particular service in the problem of determining the

asymptotic developments of a given function, and it is to this that Chapter II

is then devoted. Beginning with very easy illustrative studies, the Chapter

proceeds to problems of greater and greater difficulty and eventually treats

the general problem already considered by various investigators of determining

the asymptotic developments of the general integral (entire) function of rank p
(order > 0), following which, at the close of the chapter, the problem of deter-

mining the asymptotic developments of functions defined by power series is

briefly considered. Chapter III concerns the asymptotic solutions of linear

differential equations and is an attempt to summarize briefly and without proof

what are deemed to be the most essential results thus far known in this field,

with mention also of the corresponding results obtainable in the study of linear

difference equations, and with indications as to certain open questions still

remaining in both connections. Chapter IV considers the theory of summability

with the especial attempt, as in previous chapters, to single out what seems most

essential. More specifically, it makes an examination of a few of the standard

definitions of " sum " with the idea of subjecting each to a number of tests which,

as the author has come to view the subject, every such definition should satisfy.

For example, it is well known that if a really logical general theory of summa-
bility is ever to be constructed it cannot include all definitions of sum that satisfy

merely the condition of consistency (§ 37) since this alone does not insure unique-

ness of sum. Therefore, observing the genesis of the whole subject from the

boundary value problem as described above, it is proposed to arbitrarily limit

the general theory to those series (3) for which the corresponding power series (4)

has a radius of convergence equal to 1 and then retain only such definitions of

sum as give the unique value

s = lim 2_/ fln''^'".

«=]— 71=0

Definitions which do this are said to satisfy the boundary value condition (§ 39).

Such definitions not only all give the same sum to a given series (convergent or

divergent) (3), but they at once serve a useful purpose in analysis from the fact

that they frequently come to furnish the analytic continuation of the series (4)
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over some portion of its circle of convergence, or indeed in some cases, as in the

definitions of Borel, throughout regions lying entirely outside that circle. How-
ever limited the scope of a general theory of summability as thus conceived, it

at least has perfect definiteness and logical coherence and finds immediate use-

fulness in the theory of functions of a complex variable, and we venture the

opinion that some such characteristics as these must be preserved in any general

theory of summability that is to retain a permanent place in analysis.^ No
attempt will be made here to describe the other tests which Chapter IV sets up,

but it should be remarked that only a few of the standard definitions of sum
are tested out since they suffice to illustrate the spirit of the undertaking. The
chapter closes with a brief account of absolutely summable series and a state-

ment of certain supplementary theorems and corollaries upon summability in

general.

A most important aspect of the theory of summability, as the author regards

it, lies in its applications mentioned above to Fourier series and other allied

developments in mathematical physics, and this forms the subject of Chapter V.

For the sake of completeness the treatment is made to include both convergence

and summability. It is based upon a general method for the study of all such

developments due to Dini and appearing, though in somewhat diffuse and

inaccessible form, in his great work entitled " Serie di Fourier e altre rappre-

sentazioni analitiche delle funzioni di una variabile reale " (Pisa, 1880). Dini

naturally considered at the time of his investigations only the question of con-

vergence (not including uniform convergence), but his methods are here shown

to be readily extended so as to be applicable to studies in summability. Especial

effort has been made here as in the other chapters to summarize all essential

conclusions from time to time into actual theorems.

To Professor Alexander Ziwet the author would here express his deep grati-

tude. Not only has the book enjoyed the benefits of his critical judgment in

many ways, but his sympathy and kindly interest have served as a constant en-

couragement, and indeed they are responsible in no small measure for the ap-

pearance of the whole in its present form. The author is much indebted also

to his colleagues Professors C. E. Love and Tomlinson Fort, the former for

various suggestions and criticisms, and the latter for the valuable aid he has

rendered in reading the proofs.

Ann Arbor,

AprU, 1915

8 The adoption of any one definition for "summable series" evidently involves the exoludinp;

of many scries previously classed as summable; yet we believe the time has arrived when a single

universal definition should if possible be agreed upon, however disastrous its immediate efi'ects

upon one or more of the special forms of definition now current. The present situation in this

matter is strikingly analogous to the state of confusion which led Cauchy and Abel to the formu-

lation of their universal definition for "convergent series," notwithstanding the exclusions brought

about and the consequent objections urged by contemporary mathematicians.





CHAPTER I

THE MACLAURIN SUM-FORMULA, WITH INTRODUCTION TO THE STUDY OF
ASYMPTOTIC SERIES

1. The following formula (Maclaurin Sum-Formula^)

Efix) = i rf{x)dx - i
[/(6) - /(a)] + ^.f [fib) - fia)]

+ • • • ; Bm = inih Bernoulli number

plays an important part in the modern theory of divergent series and we shall

therefore begin by pointing out certain facts (cf. Theorems I, II, III and IV)

connected with its legitimate use. These will form the basis of the studies

undertaken in Chapter II.

Following the discussion of (1), we shall also give in the present Chapter

(cf. §§ 13-17) an outline of the general theory of asymptotic series as originally

developed by Poincare in his classical memoir in the Acta Mathematica (1886),

the elements of this theory being likewise needed for the proper development

of Chapter II.

2. In order to carry out the desired studies relative to the formula (1), let

us begin by supposing that there is given any function Ux (real or complex) of

the real variable x which, together with its first 2m-j-l derivatives, is continuous

within a certain interval (a, b) . For any value of x such that a ^ x ^ x -\- h < h

(h = constant) we may then write

2! " ^ ^(2m)!Aux = Ux+h — Ux = hux + w, Ux" + • • • + yc,_Vi Ux^^""^

^^^ ^" (h - z)

^ i (2m) 1

'''^' ^'^'

as appears directly upon applying an integration by parts 2m times to the last

term in the second member.

More generally, it appears in like manner that when ^ ^• ^ 2m — 1 we

may write

^ Known also as the Euler sum-formula. For comments upon the historical aspect of the

subject, see Barnes, Proceedings London Math. Soc. (2), Vol. 3 (1905), p. 253.

2 1



2 The Maclatirin Sum-Formula

12 I2m-fc

while the corresponding formula for the case k = 27?i is

(4) Awx^""^ = J wf™+^Wz.

Whence if //o, i^i, H2, • • • ^2m be the 2m + 1 constants determined by the

equations

Ho = 1, H2m = 0,

(5)

we shall have

or
2m

(6) hi,' = E Hj^h^i^u,^^^ + r^(.r, A)

where

(7) rirK) = - f ,(--)V ^^^^^^^^^^^'
^.(7) r.(.r, /»)- j^ ^^.+.

2^^ {2m - k)\
'^^'

Formula (6) bears a close relation, as we shall see, to the Maclaurin Sum-

Formula (1).

We first proceed to determine the values of the constants Hu, noting certain

changes which thereby become possible in the form of (7).

If we place

'^""^"'^ ~
(2m)!"*" (2m- 1)^ (2m - 2)r (2m - 4)!"^ " *

(8)
77„ „^2m-2~2

and

(9) 4^uz) = (^^,^^3)-,+ (o^^T^T^!"^ • • • "^—rr~
we have

.(.r, h) = - f u^:!:t'\^2m(h -z) + hUh -
Jo

z)]dz.

Let us now develop (p2m{h — 2) + \l/2m{h — z) in ascending powers of z. We
obtain
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(p2m(.h — 2) + \l/2m(h — z) = J2 Hk —7^ -TTj-

But from (5) we have

2m-j TT 1
JJ

E {2m- k-j)r'^ +"'--' ="'--' 0- + 2™-l); E^j^^ =-//,.

Whence,

<P27n{h — z) + \p2mih — z) = 7^^;+ (2^ — 1)
!
"^

?J
*^~'

^^'^•^-'"-^~jl

= <P2miz) — \p2miz).

Thus, if we place z = A/2 we obtain

l/'2m ( 9 j
= - lAam ( 2 )

' ^2m ( 2 )
^ ^•

The last relation, however, cannot exist for all positive integral values of m unless

the coefficients of the various terms of 4^2m{z) are each equal to zero. Hence,

(10) Hz = H,== Ht= ' = H.,m-i = 0,

and we obtain the relations

(11) rUx, h) = - f v':-:t''<P2m{h - z)dz,

(12) iP2m{ll — Z) = (p2m{z).

As to the coefficients Hi, H2, Hi, Fh, • • • H2m-2, we have^

(13) Hi= -I H2r = ^

(2r)!
^'' ^ = 1. 2, 3, • • • (m - 1)

where Br is the rth Bernoulli number.

3. We now proceed to establish the two following properties of the functions

(P2m{z) (commonly known in case // = 1 as the functions of Bernoulli)

:

(a) " The function (p2m{z) does not change sign between z = and z = h and

is positive in this domain when m is even and negative when m is odd."

(6)
" The expression \ip2miz)

\
when considered for values of z between s =

and z = h has its maximum value at z = h/2."

^ This result like others which concern the well-known properties of the Bernoulli numbers
and functions, will here be presupposed. For a proof, see Malmsten, Journ. fiir Math., Vol. 35
(1847), p. 64.
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For the proof of (a) let us consider the expression

^ ^2m-3 Hihz'"'-' Hjhh''"'-^ Hi¥f^
<p'2m-i{z) -

^2^^ _ 3) I
+ (2m - 4) r (2m - 5) !

"^
(2m - 7) !

"^ " *

Supposing for the moment that this is positive whenever < 2 < A/2, let us

multiply it by hr~"'dh and integrate from h = h to A = + 00 . The result,

except for the factor h~^"^'^^, is

1" /o_ C\ ! /O™ ON I

(2m - 3) 1 (2m - 1) ' (2m - 4) ! (2m - 2) ' (2m - 5) ! (2m - 3)

"^
3! 5 "*~ 1!3

and this must likewise be positive when < 2 < A/2. Let us now multiply

the last expression by dz and integrate from 2 = 2 to 2 = A/2. We obtain

^-//,„..;,-T'^-^' +
'
2"'U/

But (p'2„Xh/2) = 0, as follows from (12). We therefore conclude that if (P2,n-2(z)

is positive when < 2 < A/2, then ^2,,, (2) is negative throughout the same

domain. Now, ^2(2) = 2-/2 — 2A/2, (p',{z) = 2 — A/2. Whence, (p'o.Sz), con-

sidered for values of 2 within the indicated interval, will be positive or negative

according as m is even or odd, while the expression

<p2m(z) =
I

<Ptm.'{z)dz
Jo

will be positive if m is even and negative if m is odd. It follows from (12) that

<P2m{z) has the indicated properties for the interval < 2 < A.

Concerning (b) we note that if m is even we have shown that ip^miz) is positive

when < 2 < A/2 and that <p2^{hf2) = 0. Moreover, since

(pLXz) = - <p'.„Xh - 2),

the same function is negative when A/2 < 2 < A. Thus, the statement in

question follows from elementary considerations in the theory of maxima and

minima. Likewise we reach the same result when m is odd, since (f'zmiz) is then

negative from 2 = to 2 = A/2 and positive from 2 = A/2 to 2 = A.
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4. These results being established, we return to formula (6). In this formula

let us take

i(x = I f{x)dx,
fJa

where f{x) together with its first 2m derivatives is continuous from x = a to

X = h. Then w^ together with its first 2m + 1 derivatives will be continuous

within the same interval so that for any value of x for which a^x<x-\-h^b
we shall have (cf. (5), (11), (13))

hm = r'mdx -
I [/(.r + h) - f{x)] + -^ [fix +h)- fix)]

(14) .
- ~f [fix +h)- fix)] + . •

. -

+ (2m -2)!
[/^''""'^(•^- + ^^ - /^''""'H^)] + r.(.T, A),

where

(15) rr,ix, h)=^ - f f^Kx + z)<p2miz)dz.

Let us now suppose that 6 — a is an integral multiple of h, i. e., b — a = nk

and allow x to take successively the values a, a -\- h, a -\- 2h, • • • a -{- (71 — l)h.

By adding the corresponding results (14) and dividing by h we obtain

E/(« + 9/0 = Zfix) =
\ ffix)dx - i

[fib) - fia)]
5=0 x=a " •/«

(16) + Y[ U'ib) - fia)] -^ [fib) - fia)] +..• + ...

+
iL-2)l f/'"'"''^^) - /^'"'~'^(«)] + ^-'

where

(17) /?„,= _ i r Zf^Kx + Z)<p2n,iz)dz.

By placing m = co ^ve thus arrive at formula (1) provided, however, that

lim R„, = 0.3

7n=oo

5. We proceed to consider certain properties of the remainder Rm correspond-

ing to the cases in which fix) is real. From result (a) of § 3 we may apply the

^ For noteworthy cases in which this condition ia fulfilled, see Markoff's " DLfferenzen-

rechnung " (Leipzig, 1896), Chap. 9, § 8.
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first law of the mean for integrals and write

7C =^EfH.^- + eh) ( cp2miz)dz; < ^ < 1
" z=a Jo

or, since^

(18) -
I

<pUz)dz = j^,
we shall have

Whence, also

_r.Bmh^ f-l<0<l
(20) i4.-e

^2^^^^,
(6-a)Ji;

| M > |/2-(a:)
|

; a^x^b,

so that we reach in summary the following result:

" If f{x) be any (real) function of the real variable x which together with

its first 2m derivatives is continuous within the interval (a, b) we may write

formula (16) in which, if M represents a value as great as the maximum value of

|/(-'"^(a;)| within the same interval, the expression Rm satisfies relations (19)

and (20)."

6. Other important forms for the remainder in the Maclaurin sum formula

may be obtained when further hypotheses are placed upon f{x). Thus, let us

suppose in the first place that /^-'"^
(.r) does not change sign between x = a and

X = b. By applying the first law of the mean for integrals we may then write

Rm = ^<P2m{eh) f'j:P'"\x + Z)dz

(21)

^
<P2m{dh)[P"^-'Kb) - f'^-'Ka)]; < < 1.

h

Whence, by (a) and (b) of § 3,

(22) Rm = ^e^2m
(J)

[P-"Kb) - p-^-'Ka)]; < < 1.

Moreover, from (8) and (13) we have

<P2my2)- "'

I (2m) !
2^'" 2 (2m - 1) !

22'"-i ^1 • 2 (2to - 2) !

2^""-^

4! (2m- 4)1
22'"-^^ ^^ ^ (2m- 2)! 2! 2 J

and it is a demonstrable property of the Bernoulli numbers that the expression

^ See Malmsten (l. c), p. 64, 4.

^ Due originally to Poisson. See Mem. de I'Acad. des Sciences, Vol. 6 (1823), p. 590.
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here appearing in square brackets is equal to

(23) ( 1) 22"i-i (2m)!'

Whence, by adding and subtracting the term

(— n'"+17? /j2m-l

(2m)

in the second member of (16) we obtain the following result:

" If /(.r) be a (real) function of the real variable x which together with its

first 2m derivatives is continuous within the interval {a, h) and if its 2mth deriva-

tive does not change sign between the same limits, we may write

Zfix) = \ I fix)dx - \ im - /(a)] +^ [f (6) - f (a)] -^
x=a '^ *Ju

*^

'

where

ft,= (- i)"+'(e^9=^-
O^St'-'''"""^''^

-/'^"-"Wl; < e < i."

Since
22m 1 2^"* 1

(24) < Q 2^"^-^ " ^^ 2^"- ^ ^

we see that under the hypotheses of the above result the series (1), even though

it be divergent, may be used to compute the value of

h-h

(25) llj{x)
x=a

with an error numerically less than the absolute value of the last term taken.

More generally, it appears in the same manner that we shall have the above

result whenever /(.r),/'(.r),/"(.T), • • • p'^Kx) are continuous within the interval

(a, h), while the expression

llP"'\x + z)
x=a

does not change sign between 2=0 and z = h.

7. Again, let us now suppose that neither of the expressions

h-h 1>-h

(26) HP'^Hx + z), Zp-'+'Kx + z)

x=a r=a

changes sign between z = and z = h. Replacing m by m + 1 in (16), using

8 See Malmsten {I. c), P- 70.
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therein the form for i?mfi determined by (19), and comparing the result with

that of § 5 (in which m is left unaltered), we obtain

D 7,2m+2 h-h I o2m _ 1 ID Z,2m-1

But
/th b—h

/(2'»-l)(fe) _/(2m-l)(a) =
I

J2P"'KX+Z)dz.

Whence, upon recalling that Bn and Bm+i are both positive, we see that the

expression
22m 1

" 22m—

1

'

will be negative and numerically less than 1 in case expressions (26) are of the

same sign between z = and z = h, while it will be positive and no greater than

22"» _ 1
22'"-i — 1

22m—

1

-' ~~ 22™~1

in case expressions (26) are of opposite sign throughout the same domain. Thus

we reach the following result

:

" Let f(x) be a (real) function of the real variable x which together with its

first 2m derivatives is continuous within the interval (a, b) and is such that

neither of the expressions

ZP'^Kx + z), ZF-'+'Kx + z)
x=a z=a

changes sign between 2=0 and z = h. Then, according as these expressions

preserve the same or opposite signs for the indicated values of z, we may write

E/Or) =
\ fmdx - \ \m - /(a)] +^ [/'(&) - /'(a)]

(27) --^ [/'"(&) -/'"(«)]+ •••

+ ^" ^^'"

(2m -2)!
[/'"""''(^) - F-'^-'^i^)] + Rn.>

where
B ^2m-l

R^= i- ir+^e-g^ [/(2-i)(6) _ /(2-i)(a)]; < e < 1

and

EV) =
\ fmdx - i

[/(6) - /(a)] + 1^ [j\h) - f (a)]

(28) -^' [/'"(&) -/'"(«)]+ •••



General Theorems 9

where
02m—l ID Jj2m—1

R,n = (- i)-+^e ^,^_, ^^ [f'-Hh) - r---Ha)]; < e < 1."

Formula (27) was first established by Jacobi'^ in 1834. Whenever the con-

ditions for its use are satisfied it is seen that the sum of any number of terms in

the series (1) (convergent or divergent) gives the value of (25) with an error having

the same sign as that of the first term- neglected and less numerically than the

absolute value of that term. Formula (28) is due to Malmsten.^ Whenever

it may be used the sum of any number of terms in the series (1) gives the value of

(25) with an error having the same sign as that of the last term taken and less

numerically than the absolute value of that term.

8. Another important and well-known form for the remainder in the Mac-

laurin Sum-Formula may be obtained when the function f{x) may be regarded

as an analytic function of a complex variable.

To see this we recall in the first place that if /(w) and ^(w) are any two func-

tions of the complex variable w {w = x -\- iy) both analytic and single-valued

in the neighborhood of the point w = a and of which the second has a zero

of the first order at the same point, then we have the formula

J <Piw) ip{a)
[77, ^ if 6 = 27r,

where the integration is taken in the positive sense along the arc of a circular

sector of small radius e and center at to = a and whose angle is 6. In fact, this

formula results directly from well-known principles in the theory of complex

integrals upon observing that in the present instance we may develop the func-

tion f{w)/(p{iv) in the form

-t- p{iv) ; c_i =
w — a ^^ " (p'(a)

where p{iv) is analytic at the point w = a.

An immediate and useful corollary of (29) is as follows:

" If f{w) and (p(w) are any two functions of the complex variable «' both of

which are single-valued and analytic in a region A of the ?t'-plane and of which

the latter vanishes within A only at the points iv = Xi, Xo, • • • X„ which are

zeros of the first order, and if Cn designate any contour lying within .1 and

including the points iv = Xi, X2, • • • Xn, we shall have

where the indicated integration is performed in the positive sense."

T See Journ. fiir Math., Vol. 13 (1834), p. 270.

' See Malmsten {I. c), p. 72.
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We proceed to apply formulas (29) and (30) to our present problem.^ For

this purpose let us take^^

(31) ip{ic) = gC^'iM) ("'-«) - 1

and let us suppose /(w) to be any function which is analytic throughout a vertical

strip of the w-p\a,ne extending to an infinite distance both above and below the

axis of reals and including the two real points w = a, iv = b (b > a). For the

contour C„ let us take that formed by the line w = a -\- iy (the point lo = a

excluded), by the line w = h -\- iy {w = h excluded) and by the lines id = x ± ij

(j = constant > 0) together with small semicircles of radius e > h about the

points IV = a, 20 = h, the former extending to the right and the latter to the

left.

Since ^(w) has zeros of the first order at the points iv = a -\- jih; y = 0,

1, 2, • • •, while at the same points (p'{w) = 2Tri/h, we obtain as a result of (30)

(32) hZfix) = hf{a)+ f
fiw)

div.

We proceed to study in further detail the complex integral here appearing.

Fig. 1

First, the contribution coming from the side JA (see Fig. 1) is

'7(^

•-r
ij)

,
T7 ax,

ip{x - ij)

and since (p{x — ij) becomes infinite when j = + oo like e-"-''"', we have but to

suppose that/(w) satisfies the following supplementary condition:

(33) lim fix - ij)e--''^l'' = 0; x^b

in order to have 7i = provided we take j = oo. In particular, condition (33)

will be satisfied whenever \f{w) \
remains less than a constant for all values

of w within the strip already mentioned.

' See Petersen's " Vorlesungen uber Funktionstheorie " (Copenhagen, 1898), pp. 161-169.

'° It is to be understood that the constants a, b, h have the meanings already introduced;

viz., h = a + 7ih; h > 0, n = positive integer.
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Secondly, let us consider the contribution coming from the portion DEFG.
By writing

(p{w) <p{w) ''^ '

and observing that the integral oiji^w) over DEFG is equal to that over DCHG,
the contribution in question becomes

»J, ^(^rni) '^''+'i ^w+M ^y

Of the integrals here appearing we observe that the third may be neglected by

taking j = + °° provided that f(iv) satisfy the following supplementary con-

dition:

(34) lim fix + ij)e-'-''^l'' = 0; a ^ x ^ b.

Next, the contributions from the semicircular arcs BCD and GHI are equal

respectively to — {hj2)f{h) and — (h/2)f{a) except for expressions that become

infinitesimal with e, as follows from (29).

We shall now assume not only the existence of (33) and (34) but that of the

following stronger condition:

(35) lim fix ± ij)e^'>-^''"'^' = 0; a^x^h,

where t] is an assignable positive quantity. If we then take account of the two

remaining contributions, viz., those arising from the sides AB and IJ , we obtain

in summary

h 1^ fix) = fiw)dw - r [fib) - fia)] + i , . dij
x=a Jghcjd ^ Ji <P\P -r W)

. r hja + in) + ma + iy)
, , f-' fC' + iy)

,

.r-«/(a+M,
+ 'J_, via + iy)'^^'

in which the various improper integrals have a meaning by virtue of (35).

Let us next allow e to approach zero. Since

<pia + iy) = ifib + iy) = e-~''y'^ - 1,

we thus arrive at the equation



12 The IMaclaurin Sum-Formula

(36)

h ZKx) = f f{x)dx -
I [m - f{a)]

+
1 r [Kx + iy)-f{x-iy)]lz:i ,

Moreover, the function (1/i) [/(.t + iy) — f(x — iy)Yj^^z'',, being real when y

is real, may be expanded by Taylor's formula (with remainder) into the form

ihf (x)y - lr{x)y' + • • • + (L-"'l)V'''""''^^'^^'"'~' Tl

Recalling finally that^^

we reach the following result:

" If the function f{iv) is analytic throughout a vertical strip of the lo complex

plane extending to an infinite distance both above and below the axis of reals

and including the real points iv = a, iv = h, and is furthermore such that

lim f{x ± iy)e-'^--'"^^'y =0; a^x^h,
y=+oo

where rj is some assignable positive quantity, we may write

2 /(.r) =
\ f Kx)dx - h im - /(a)] + ^'f I fib) - f{a)]

B2h^
-^[rib)-r{a)]+ •••

where

lin
(-l)" r [P'^Kx + idy) - P^Kx -idy)]-l

{2m)\ihX g2,w;._
1 y (^y

6=1 when m = 0,

< ^ < 1 lohen m = 1, 2, 3,---

Equation (36) with A = 1, was first given^- b}^ Plana in 1820 and soon after-

wards by Abel.^^ The same result was obtained through the calculus of residues

for the first time by Kronecker^^ in 1889.

" See Malmsten {I. c), p. 59.

" See Mem. della Accad. delle sci. di Torino, Vol. 25 (1820).
i» See Oeuvres completes (1881), Vol. 1, pp. 21-25. Ibid., pp. 34-39.

" See Journ. fiir Math., Vol. 105 (1889), p. 354.
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9. We proceed to note certain theorems which follow from the preceding

results and which will prove useful in the study of divergent series (Chap. II).

Theorem I. Letf{x) be any (real) function of the real variable x which together

with its first 2m derivatives is continuous throughout the infinite interval x > a.

Also, lei it be supposed that the following series is convergent-}"

(37) E r f^'^'Ky + t)<P2jt)dt,

in ivhich ipim{t) represents the 2mth Bernoulli function. We may then write

Z /(^) = C^+ ^/(.^•)c/x - hm + f; fix) - § f"'{x) + • •
•

x=a ^a ^ '

ichere

^m{x) = Z f'-^Ky + 0^2.(0^^^ = ^ J ^,

"
Hf'-Ky 4- dy)-

^^^^ \x^a
\0<dy<\,

and ichere Cm is a constant as regards x, defined by the equation

C^ = l/(a) -
fy/'(«) + 4f/'"(«) + (2Jr^-off f

''""'''
^""^ - ""•(«)•

In fact, the expression fi^(.r) will exist for .r = a, a + 1, a + 2, • • •, and by

the results of § 4 we shall have

Jlfix) = rf{x)dx - i
[fix) - /(a)] + |y' [fix) - fia)]

x=a tJa ~ '

where

+ i2m-2)l
^^''^~''^'^^ ~ /(^-^>(a)] + R„

/»1 x-l

IL= - Z/^""^^/ + t)^im{t)dt = Qmix) - Qmia).
Jo y=a

But this result is coextensive with that indicated in the theorem. As to the

second form there given for fim(a;), we observe that by virtue of statement (a)

of § 3 we may apply the first law of the mean for integrals to each term of the

series representing fi,„(a-), thus writing

^ix) = Zf^'^'Hy + Oy) f <P2,nit)dt; < ^, < 1,

1^ It will be understood that in this and the following two theorems y takes onlj* the values

a, a + 1, a + 2, • • •

.
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which, upon using (18), becomes

(39) an(.r) = ^7^^' HF'-Hy + By).

We add that in case lira /(^p-d (.r) = 0; p = 1, 2, 3, • • •, the constant Cm
x=oo

will be independent of m as well as of x, for we shall then have

SO that by placing x = co and observing that lim Oi(a:) = lim fi,„(.r) = 0, we
obtain Ci = Cm.

Theore:m II. Let f(x) be any (real) function of the real variable x ichich

together icith its first 2m derivatives is continuous throughout the infinite interval

X > a. Also, let it be supposed that f^-^^{x) does not change sign within the same

interval and that lim /^-"""^^
(.r) = 0. We may then ivrite

Zm = Cm + ffi'-^-Hv - hfi'V) + |jV'(aO - ^f'ix) +

(2m)

where

^'^
,e,„(.T)r-^>(.r);

^•''^''
(2m) r'"^-"^-'

^-^^^ [- l^e^(a:)^l,

and where Cm is a constant as regards x, defined by the equation

Cm = hKa) - -^^f'ia) + -^r(a) +
(2^)1

"/^^"""(«) " "-(«)•

To prove this theorem we first observe that, as a result of our hypotheses

upon /^-'"^ (a:), the terms of the expression

Fm{b, X) = E f f^'^'Ky + t)ip2m{t)dt; b > X
y=x I/O

will all have the same sign, so that Fm{b, x) is either an ever increasing or an

ever decreasing function when b increases; also by treating Fm{b, x) as we did

the Rm of (17) by means of (21), (22) and (23) we obtain

^-^^' •''^ =
(2m) l'"

-^rrT-r Vm{b, x) {/<^'"-^>(6) " f^'-'\x) } J

< vmib, x) < 1.1^

" The expression G appearing in § 5 is in general a function of m, a, b and h. Since, in the

present instance we have h = 1, a = x we represent 9 by ??m(6, x).
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Whence, the expression

Fm{x) = Hm Fm{h, x)

exists, and since by hypothesis
limj(2m-l)(5) = 0,
6=00

we shall have

^ Vmix) ^ 1

or

(40)

(_ n^+iD f o-"* — 1 1

Thus, fim(-^) exists and has the form indicated in the theorem.

Now, by equation (16) we shall have also

E /(.!•) = fj{x)dx - i [j{:x) - f{a)] + ^ [f (.t) - f (a)]

+
(2m)!

" [Z^'""'^^-^) -P'^-'Ka)] + 0.(:r) - i2.(a).

Thus, we reach the desired result. Again we note that Cm will be independent

of m as well as of x whenever

lini/(2p-i)(^) = 0; 2^
= 1,2,3, •••.

«=00

Theorem III. Let f{x) he any {real) function of the real variable x which

together with its first 2m + 2 derivatives is continuous throughout the infinite interval

X > a. Also, let it be supposed thatf^^'^\x) and f^^"^'^^\x) do not change sign within

the same interval, ivhile

\\mf^'^-'\x) = 0; p= 1, 2, 3, •...
a;=oo

Then, iff^^'^^x) and
f^^"''^^'' (x) preserve the same sign (x > a) ice may write

Zm = C + rfix)dx - y{x) + §lf'{x) - ^f"'{x) + • .

.

ivhere

^mix) = E rf''-\y+t)<p2mmt = (- ir^'en.ix)j-^~-.f^'--'\x)-,
y=x Jo \^m) i

X ^ a

^ Omix) ^ 1,

and where C is a constant as regards both m and x, defined by the equation
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On the other hand, iff^'^'"^(x) and f^-"''^^\x) preserve opposite signs (x > a) {other

conditions remaining as before) we may write

%m = C + £f{x)dx - I fix) + fff'ix)
- ~-f'"(x) + .

•

.

+ ---(^2,n)r^P'^-H^-) + 9.^^),

u'here

^r.{x) = ^-^y,-/^^-"Cr) + E j^
f''-Ky+t)<P2Ui)dt

02m-l _ 1 D
f 3- > fl

<.
iJ «..U; 22--1 (2w)!-^ ^•'^'

1 ^ e„.(.r) ^ 1,

and ivhere C is a constant as regards both m and x, defined by the equation

C = hfia) - ^f'{a) + -^f"\a) +
--(2m)r'-^'''"""^^^

" "-^"^-

For the proof of this theorem we first observe that the conditions for theorem

II, and hence also those for theorem I, are here fulfilled both for m = m and

m = m + 1 ; also the conditions that Cm shall be independent of m. Upon
applying theorem II with V.m{x) as given by (40) and comparing the result

with that obtained by placing m =7/1+1 in theorem I, we obtain

J) [
92m 1

I

n 00m
(2;^ {

.-W -^s^ - 1 |/«->(x) = (^„^ £/-«'(. + ex

Let us now write /(^m-i)
(^^-^ jj^ ^j^^ form

-lim ( 'llf^"^Ky+t)dt
b=co I/O y=^

and let Qm'ix) represent the expression Qm{x) of theorem II in the present dis-

cussion. Then, in case f'--'"\x) and /^-'"+-^(a:) preserve the same sign it follows

from (41) that

(42) njix) =
~^^^^^

;-^ 4^m{x)f^'"^-'^ (x); - 1 ^ ^mix) ^

and hence, for the first expression Qmix) of the present theorem, we shall have

^ e.(.r) ^ 1

with which the first part of the theorem becomes established.

1" Cf. Makkoff (L c), pp. 131-133.
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If, on the other hand, /^-"'H^') and /'^-'""'"'^
(a;) preserve opposite signs {x > a)

we shall have equation (42) in which

22m 1 92to—1 1

^= VmUV = 92m—

1

' ~ 22"i—

1

and thus the second part of the theorem becomes established, upon observing

finally that we here have 9.„Xx) = 0„/(a;).

Theorem IV. Let f{iv) he any function of the complex variable iv = x + iy

ichich is anahjtic throughout all portions of the w plane {ic = co excl.) for ichich

x ^ a. Also, let it be supposed that

lim f(x ± iy)e^'^-''^^ = 0; .r ^ a,

where rj is some assignable positive quantity. We may then ivrite

Zfix) = an + rfii-)dx - i/(.r) + ^f'ix) - ^f"'(x) + • • •

where

Qmix) =
i-ir r f^'"H^- + edy) - f^'^^Kx - ejy)

{2m)liJo e'^^'y - 1 ^ ^'

^a; = 1 when m =
< ^s < 1 ichen m = 1, 2, 3, • • •,

and where Cm, is a constant as regards x, defined by the equation

Crr. = hf{a) - fj'ia) + ^J"'{a) - • • • + --^2^^
^'^~"^~''

^'''^ ~ ^"'^"^'

This theorem is, in fact, a direct consequence of the result stated in § 8,

being obtained from it by placing h = x and rearranging terms.

Generalization of the Preceding Results^^

10. The results given in § 4-7 and the first three theorems of § 9 require

that the function f{x) together with its first 2m derivatives shall be continuous

throughout a certain specified interval. When this condition is not satis-

fied the same results and theorems no longer exist, at least in general. How-

ever, in cases in which fix) satisfies the indicated condition except at a finite

'* For a derivation of the Maclaurin sum-formula from the standpoint of Fourier series, see

PoissoN [1. c). A still difTcrcnt method may be found in Boole's " Treatise on Finite Differ-

ences " (London, 1860), pp. 80-84. The formula has been generalized in various directions by

Barnes; see Quart. Journ. of Math., Vol. 35 (1903), pp. 175-188; Trans, of Cambridge Philosophical

Sac, Vol. 19 (1904), p. 325; Proceedings of London Math. Soc. (2), Vol. 3 (1905), pp. 253-272.

3
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number of points (at which discontinuity or uncertainty may exist) we may

still obtain certain noteworthy results.

Tn order to show this we first observe that if u and d be any two functions

of the (real) variable x which together with their first derivatives are continuous

throughout the interval {a, a -{- h) except at the point x = ^, we may write

+ ) idv = uv
\

- uv
\

-
( I + )

vdu

€ being an arbitrarily small positive quantity. This is, in fact, a direct conse-

quence of the ordinary formula for integration by parts.^^

In particular, if 7/.c be a function which together with its first 2m + 1 deriva-

tives {u', u", • • •
«(2m+i))

jg continuous within the interval {a, a + h) except at

the point x = j3 we may obtain by repeated use of (43) the following result

(c-/. (3)):

p=l V' L P=0 V- Jz=3-a-e

"Whence, if ^o, Hi, • • • Ihm be the constants defined by (5) we may write

(cf. (6)):
2m-l r2m-l 2m-i-/'L_ Np -|z=3-a+e

where

Upon introducing the function (pim{^) and making use of the relations (10)

and (13) we thus obtain

L m-1 T> 7,2fc

hu: = Az.. - \m: + E (- D^^^^M^'^

(44)

where

+ E //./i^ E ^^
l,

^ y^ir^ + r.(a, A),

+
J

jWx^''"+"^2m(.'C-«)^^.

The case of especial interest for our present purpose is that in which i/^ is

taken in the following manner

»9 As usually stated (cf. Goursat, " Cours d'Analyse," Vol. 1 (1902), § 85) the formula

requires that u and v with their first derivatives shall be continuous throughout the interval of

integration.
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Ux = I f(x)dx when a ^ x ^ ^ — e,

Wi = ( I +1 ) fix)dx ivhen jS + e ^ a^ ^ a + /;,

f(x) being any function which together with its first 2m derivatives is continuous

within the interval (a, a + h) except at the point x — /S. Such a function w^

together with its first 2m + 1 derivatives will be continuous except at a* = jS.

Whence, applying (44), we may write^°

'"-1 iR,^2fc

(45) + E (- I)'-'^~ A/«'-»(a)

:

L A=0 p=0 Pl Jx=-f

Let us suppose lastly that the interval (a, a + h) containing the point x = 8

is part of a larger interval (a, b) throughout which (except at a* = B) f{x) satis*

fies the indicated conditions; also let us suppose that a is one of the quantities

a, a -jr h, a -\- 2h, • • -, b — h. If then we apply formula (16) to/(.T) when con-

sidered within the intervals (a, a), (a + h, b) and apply formula (45) to the

same function when considered within the interval (a, a + }i) we obtain, after

adding the three results and dividing by li,

n-l h-h -. / ^3_e
r^'

\

Z/(a + g/O = Z/(^) =7 + /(.r)f/.r

3=0 x=a ll' \Ja t/g + e/

~
AU "^ i )

'^^'"^ '^^^'^--^-'^ " "^^''^

E 7/.^'= Z ^- + ^ ^-^ /(^+^i)(^ + :r)(46)

.where

+ (2m -"2)T~ t/^'""''^^) - /^'"-'H^)] + /?.

By use of this formula instead of the earlier corresponding one (16) we arrive

20 We note that/(-"(i3 + x) = ?/)3+x and hence /(-"(/3 + x) ]-^=l, = 0.
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at the desired theorems corresponding to the first three of § 9. Since these are

long in statement though readily supplied we shall omit them.

Analogous results may evidently be obtained whcn/(.r) presents any (finite)

number of exceptional points of the type just mentioned.

11. Again, the results stated in §S and the fourth theorem of § 9 require

that f{iv) be analytic within a certain domain. If, on the other hand, this

function presents singularities at a finite number of points within the domain,

but otherwise satisfies the indicated conditions, we may readily make such

alterations as are necessary to preserve correctness. For example, let us sup-

pose that the function f{tc) of theorem IV satisfies the conditions there stated

except at the point w = 13 = p -\- iq; a < j) < x, q < 0. The theorem will

then continue to hold true-^ provided that we subtract from tlie second member

the residue r^ of the function

corresponding to the point iv — 3. However, if the exceptional point occurs at

y; = fi
z= p -\- iq-^ a < p < X, q > 0, then (in view of the manner in which in

§ 8 the integral of f(rv) over the path DEFG was transformed to one over the

path DCIIG) the theorem will continue true provided we subtract from the

second member the expression r^ together with the residue r/ of the function

2Trif{w) corresponding to the same point w = jS.

Other cases are those in which a singular point occurs on either of the lines

^<; = a -j- iy^ w = X -\- iy or at a real point iv = ^ < x. If, in the last of these

cases (which is the only one to which we shall refer later), the singular point is

a pole of the first order the theorem is seen to continue as a result of (29) provided

that the term

mdx
be changed to

iim
e=0 (.r ^^'i[ )-^(->^-^ - ^^ - ^'^''

where r^, r/ have the meanings already given.

Series of Stirling

12. As a preliminary application of tlie preceding general theorems to special

functions fix) let us take /(.r) = log x, a = amj real number > 0. We are

thereby led to certain well-known results respecting the series of Stirling.

The first part of theorem III may here be applied since we have

(_ 1)P-1(7; — 1)!

" Cf. § 4.
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Whence, upon observing that

log xdx = [x log .r — .r]', = /»'i + x log x — .t; ki = const.£
and that

x-l

X) log a; = log r(aO — log T(a) = /i-2 + log r(.r); 7^2 = con5^.
x=:a

we obtain

log r(.T) = A + (X _ ^) log .r - .r + j-^ ^ - ^^ ^+^ _^

(-ir^.-i 1
"^

(27W - 3)(27?i - 2) a;2"^-3^
^"^^••^^'

where A is a constant as regards m and x and where

(- 1)-+^^^ 1

(2m- l)(2m) a;^
(48) Tmix) = e^(.r) ,o^_:,,,oI^ i^^ ; ^ ©-(-^O = !•'

Moreover, by comparing the above results with the well-known formula^^

log T{x) = I log 27r + {x — ^) log x — x

(49)
_ r/ 1 1 i\ , dt

+ Jo Vl-e-^ t 2) ^
t

it follows (upon placing .x = 00 ) that A = ^ log 27r.

Thus, we arrive at the series of Stirling (see Preface) and it appears from

(48) that, though divergent, the series may be used to compute log T{x) with but

slight error when x (real and positive) is large. In fact, the first term neglected

is seen to constitute an upper limit to the error committed by breaking off the

series at any one point. This fact was pointed out by CArciiY-^ in 1843 through

an independent investigation based upon formula (49), he also noting in this

connection the possible value of divergent series in computation. Cauciiy's

work was, however, confined to this one series and in this it appears that his

results might have been obtained much more directly, as indicated in § 12,

from the earlier general investigations of PoissoN and Jacobi relative to the

Maclaurin Sum-Formula.

We add that the value of the constant K may be obtained independently of

formula (49) by use of the well-known formula of Wallis expressing the value

of x/2.25

22 In the present case it may be shown that < 0„,(x) < 1. See Malmsten {I. c), p. 75.

2' Usually attributed to Binet.
2'' See Comples Rendus de I'Acad, dcs Sciciices, Vol. 17 (1S43), pp. 370-376.

2* See Markoff [l. c), p. 134.
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Preliminary Discussion of Asymptotic Series

13. The formula of Stirling, by means of which the function

log r(.r) - (x — ^) log x+ X

may be identified with a certain divergent power series in l/x, affords an illustra-

tion of an important class of developments known as asymptotic series. We
proceed to give at this point a brief exposition of the general features of this

subject, leaving its further development and applications for later chapters,

especially chapters II and III.

Following PoiNCARE, we adopt the following definition:-^

" A power series of the form

(50) oo + Qi (".)+ fl2 (") + •••
; flo, «!, ^2, •

' constants

is said to represent asymptotically the function f{x) for large positive values of x

whenever

lim X- [fix) - («o + a,fx + a^fx' + • • • + aj.r")] = 0;

(51) ^=+'»

n= 0, 1, 2, 3, •••.""

Thus, for a given value of n the difference between the function and the sum
of the first n + 1 terms of its corresponding asymptotic series (in case one exists)

vanishes to a higher order than the nth when x = + oo , as would be the case in

particular if the series were convergent. Symbolically, the above relation is

expressed as follows:

(52) fix) - Oo + ajx + a,lx' + • • •

.

Several general observations are here desirable. First, a given function fix)

can be represented asymptotically in but one way. In fact, we have from (51)

(53) fix) = ao+ ailx + a.lx' + • • • + an-xlx--' + ""^'"^""^
; lim €„(a:) =

26 See Ada Math., Vol. 8 (18S6), p. 29G.

2' In this definition no restrictions are placed upon (50) as regards convergence or divergence.

However, in the usual applications the series is divergent for all values (positive) of x, but as an

instance in which the contrary is the case we have

X 3? X^

In the most important applications (cf. Chapters II and III) /(x) is a function (either given

explicitly or else determined implicitly as a solution of a linear differential or difference equation)

capable of analytic continuation into the complex field, being in fact analytic throughout the

finite plane with the exception of points (finite or infinite in number) situated upon a finite number
of straight fines radiating from the origin and having the point x = «= as a non-polar singularity.

For further criticisms upon the definition of asj'mptotic series sec Thom6, Journ. fiir Math.,

Vol. 24 (1904), pp. 152-156; Van Vleck, The Boston Colloquium Lectures (New York, Mac-
millan, 1905), pp. 77-85; Watson, Philosophical Trans., Vol. 211A (1911), pp. 279-313.
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and in case we had also

fix) = 60 + br/x + b,/x^' + • • • + 6n-i/a:"-^ + ^" ^^^'^'^
' ^'"^ ^"'^^) = ^

•C a;z=-|-oo

we should have

(ao - bo) + (ai - fei) ^ + (a2 - 62) -^ + • • • + («n-i - 6n-i) -;ii:i

. an-bn-\r enjx) — €„'(a:) ^

Whence, Oo = &o, as results from the last equation by placing x = + x>
. Making

use of this relation in (54), multiplying both members by x and proceeding as

before, we obtain ai =61, • • •, etc. The converse of the above statement is,

however, not true as appears directly when we note that if f(x) is represented

asymptotically by (50) so also is, for example, the function f(x) + e~^.^^

Again, it is desirable for the sake of clearness to note that asymptotic series

in general cannot be used for purposes of computation in the sense in which

Stirling's series can be used to compute log r(.T). In fact, no information is

at hand respecting the error committed by stopping at any preassigned term.-^

There are, however, numerous and important asymptotic developments^'' which,

like the series of Stirling, are derivable by use of the Maclaurin Sum-Formula

and for such the limit of error may usually be fixed by means of the formulas

then present for the remainder. But in all cases, the asymptotic development

furnishes information as to the behavior of the function when x is very large.

Thus, the expressions

ao, Go + ai/x, Go + ai/x + ai/x^, • • •, ao + ai/x + ai/x'^ + • • • + cim/x"'

constitute a series of successive approximations to the value of /(.r) provided

that X is sufficiently large. Furthermore, we have

lim/(a:) = Oo
z=+co

(55)
lim^a;[/(.r) - Oo] = cti

lim x^'ifix) — ao— ai/x — ailx^ — . .. — a„_i/.r"-i] = o„.

Conversely, when the behavior of f{x) for large positive values of x is known,

the equations (55) serve to determine the coefficients ao, ai, 02, • • • of the corre-

sponding asymptotic development if one exists.

28 By adopting a more limited definition of asymptotic scries than that of PoiNCARfi, Watson

has obtained a noteworthy theorem upon this question of uniqueness. See Philosophical Trmis.,

Vol. 211A (1911), p. 300.

29 For noteworthy exceptional cases, see Stieltjes, Annales de I'Ecole Normale, ^'ol. 13 (18SG),

pp. 201-202.
3" This is true in general of the developments considered in Chapter II.
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14. The following consequences of the definition (51) are especially note-

worthy:^^

7/

then

(a)

ib)

fix) ~ oo + fli/.'K + aa/.v" + • • •

,

(p{x) ~ 6o + bi/x + bojx- + • •
•

Oi ± 6l , 02 =t &2 ,

fix) ± <pix) - (ao ± 6o) + -^7— + ^ +
X X-

fix) • (fix) '^ eo + Ci/.r 4- Co/a:- + • • •

,

where c„ = oo^n + aibn-i + a2&n-2 + • • • + Cnho',

(c) /(a^)/^(ar) ~ cfo + (/i/.t + d^/x' + • • •

,

provided that bo + 0, f/ze coefficients do, di, do, • • • ^emgr determined hy the equations

'
cfo = b^d^

a\ = 6if?o + ^of/i

On = bndii 4- 6„_iJi + • • • + 6orfr,;

{d)

provided that Oo = ai = 0."

In other words, asymptotic series are subject to the same laws of addition,

subtraction, multiplication, division and term by term integration as convergent

power series in l/x.

For the proof of (a) we have but to note that

an+ enix)
lim e„(.r) = 0,

bn -\- en'ix)

fix) = ao-\- ajx + a2/a;2 + • • • + a„-i/^" ^ +

ipix) = 6o + bilx + h.Jx' + • • + bn-i!x--' +

Thus, we may write

xr ^ , /^ r ^l \ I y f _i_7 ^^J_ («n rb bn) + r7n(a-)

/(a-) ± ifix) = (rto 4= feo) + h (on-i ± On-i) ^:^„_i + -^

lim e/(.r) = 0.

X=-\- 00

lim r?„(.r) = 0.

As regards (6), let us indicate by *S„(a-), r„(a:) and 2„(.r) respectively the

sums of the first n-\- I terms of the three series in question. Placing for brevity

fix) = /, <pix) = ^, €nix) = 6, 6„'(.r) = €', Sn(.r) = S, Tnix) = T, 2„(.t) = S,

lim = lim, we shall have

3' See PoixcARf (L c), pp. 297-301.
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(56) /=S + :^, ^=r +
f^;

Iim6 = lim6' =

and

where P is a polynomial in x of degree no higher than the {n — l)st.

Whence,

or

x^lf - <p - i:] = fe' + cpe+ {P - ee')^-.

Now, lim/ = cfo; lini cp = bo from which it follows that

lima;"[/- (^ - S] = 0.

For the proof of (c) let us use the same notation as above except that 2 shall

represent the sum of the first n -\- 1 terms of the series in which the coefficients

do, di, c?2, • • • appear. Then, using equations (56) we shall have

_^ ,

and since lim S = ao, hm T = 6o =1= it follows that hm ^"tj = 0.

Moreover,

y^= 2 + w; hm.T"a; = 0.

Whencs,

Hm .T" f - - 2 j
= Hm x^'irj + co) = 0.

The proof of (d) is readily supplied. We have from (53) when ao = ai =

/ S{x)dx - ^-t
2^^.2

-t-
3.^3

i- \-

(,^ _ 2)a;"-2
"^

(n - l)a:~-i

'

/„(a;) = X" '

J
^^dx

and, since lim e„(a;) = 0, we may say that corresponding to an arbitrarily small

positive quantity 5 there exists a constant x^ such that |e„(.r)|< 5; x > x^.

Whence,

, . M .r. rdx d
M.r)|^.x--5j^ -.= --,; x>x,

so that lim r]n{x) = 0.
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In distinction, however, to the properties of convergent power series, the

term by term derivative of the asymptotic development of f(x) will not neces-

sarily be the asymptotic development of /'(a-). This is most easily shown by an

example. Thus,

(57) /(:r) = e"- sin (e^) ~ + " + ^+ •
* '''

but since /'(.^) = — e""" sin {e"") + cos (e""), the expression hm/'(.r) is oscillatory

so that not only does the term by term derivative of the series (57) fail to repre-

sent /'(a-) asymptotically, but/'(.T) permits of no such representation whatever.

However, if

fix) ~ «o + - + ;^ + • •
•

and if /'(a) is known to be developable asymptotically, then

„,, , ai 2a2 3cf3

(58) •^^^^'^-.^-'^-"^ •

In fact, if /'(.r) were developable asymptotically in any other way than (58)

it would follow from (d) of the above results that /(.r) was developabl ; asymp-

totically in two different w^ays.

15. In addition to the properties (a), (b), (c) and (d) of § 14 we note also the

following general result:

''Let

fix) = ao + tvix) ; ivix) ~ ^ + J +
* '

'

and let Fif) he a function of x through f which, tvhen written in the form Fiao + w),

is developable as folloics:

Fiao + w) = Fiao) + F'iao)w +^^ w' -\- -

-

^""^^

.F'^'-^'M „_, ,

F(")(ao) -f- 6n(2tO „

(n — 1)! nl u,=o

ias happens in particular when Fiao + ?y) is analytic at xo — 0). Then we may

write

f(/)~f(«.)+'>|+---+f-:+---,

where p\, jh, • • •
, Pn are the coefficients of the successive powers of l/x ohtai?ied by

substituting into (59) ( exclusive of the term
"

w" 1 the first n terms of the given

asymptotic development of wix)."

32 Cf. BuoMwicii, " Infinite Series " (London, 1908), p. 334.
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In fact, from (b) of § 14 we may write

F{ao) + F'{ao)w -| 2]^^' + •
•

' H
^^l
— '^ F{ao) + — + -:$+ • • •,

and hence (59) may be written in the form

Fiao + w) = F(ao) + - + 1^+ • • • H ^n ^ 'T^^ ' ^1°^ '^nOx') = 0.

If we now write €n{w)io'^ in the form

and observe that

lim en{w)w'^x'^ =
a;=oo

we obtain the desired result.

16. We note in connection with the definition (51) that we have supposed x

real and positive. More generally, f{x) is said to be represented asymptotically

by the series (50) throughout an infinite region T (usually a sector with center

at a: = 0) of the complex plane when, for all corresponding x values, the equation

(51) exists in which lim is substituted for lim . In the case frequently pre-
\x

I
=00 a-= + «)

sented of a single-valued function f{x) having an essential singularity at the

point X = 00 , we note that the above mentioned region cannot completely sur-

round the point a; = 00 , since we should then have lim f{x) = ao for all methods
|x|=oo

of increase of \x\, thus contradicting the hypothesis that the point a; = 00 is

essentially singular.

Again, if f{x) and the region T be given, we observe that the necessary and

sufficient condition that f{x) be developable asymptotically throughout T is

that there exist a set of constants oo, ai, CI2, • • •, On, • • • satisfjdng relations (55),

it being understood that the values of x appearing in these relations are confined

to T. In fact, if (55) exist we have (51) and conversely. The same relations

(55), when employed as a sufficient test for the existence of an asymptotic de-

velopment for f{x) throughout T, are usually difficult to apply and hence of

little value in practice, since f{x) is not in general so given that it is possible

to determine whether the indicated limits (representing ao, ai, a2, •••) exist.

A sufficient test which has a wider field of applicability is supplied by the fol-

lowing

Theorem V.'^^ Let fix) he a function of the complex variable x analytic within

and upon the boundary of a certain infinite region T of the x plane, the point .r = 00

,

hoivever, being excluded. Also, let (p{x) = f{l/x) and let T' be the region {having

33 Cf. Ford, Bulletin Soc. Math, de France, Vol. 39 (1911), p. 348. Line 13 should here read
" le point a; = 00 toutefois etant exclu."
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the point .r = u'pon its boundary) obtained from T by means of the transformation

X = l/.r'. //, then, for values of x in T' the foiloiving limits exist:

lim ^(.r), lim ^'(x-), lim ^"(.r), •••, lim ^^"^(a;),

and are represented respectively by (p{0), ^'(0), • • •, (p''''\0), • • - {these values being

assumed independent of the direction of approach of x to in T') we may write for

values of x in T

fix) - flo + ai(l/.r) + aoil/xY- + • • • + a.(lAr)- + • • •

where

cik =
^.,

;
/t = 0, 1, 2, 3, • • •, ?i, • • •

.

In order to prove this Theorem we shall begin by establishing the following

Lemma in the general theory of functions:

Lemma I. " Let (p{x) be a function of the complex variable x analytic within

and upon the boundary of a certain region T' of the a:-plane, exception being

made, however, of the point x = situated upon the boundary at which point

<p{x) may have any character. If, then, for values of x within T' the following

n -{- 2 limits exist:

Hm (fix), Hm (p'(x), hm (p"{x), ••-, Hm ^^«+i)(a:)

a:=0 x—Q z=0 x=0

and are represented respectively by ^(0), (p'{0), <p"iO), • • •
,
^^"+^^(0) (these values

being assumed independent of the direction of approach of a* to in T') we may
write for values of x in T'

(p{x) = «o + aix + aox- + • • • + an-i.r"~^ + [n„ + r„(x)].t"; lim r„(.r) = 0,
x=0

ao, c'l, ao, • • • , an being constants determined by the equation

(P^''HO)
a, = ^j^\k=^0,l,2, •••,n)."

In fact, under the above hypotheses we may write for any value of x in T'

(60)

<p(x) = <p(c) + <p'{c){x -c) + ^(x-c)'-+ '+ ^-^ (x - c)"

+ ^J\x - t)-cp^-+'Kt)dt,

where c represents a fixed value of x taken within T' and arbitrarily near to

and where (at least if x and c are each taken sufficiently near to 0) the inte-

gration is understood to take place along the straight line joining the point x = c

to the point x = 0. The existence of (60) may be readily verified by performing

an integration by parts n times upon the last term in the second member.^^

3^ Cf. GouRSAT, " Cours d'iVnalyse," Vol. 1 (1902), § 86.
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If in (GO) we now allow c to approach the limit zero through values that lie

within T' {x fixed), and if we introduce at the same time our hypotheses con-

cerning the existence and meaning of ^(0), ^'(0), ^"(0), • • •, (;c>^"^(0), we obtain

<^"(0) , ,
,

<^("-"(0)
,.n-l

where

(62) r„(.T) = [{^—^y cp'^+'Kt)dt.

In order to complete the proof of the Lemma it thus remains but to show

that with r„(.T) defined as in (62) we shall have lim r„(.T) = provided always

that X remain in T'.

Now, for all values of t on the line of integration in (60) we have

X — t

X
1.

Moreover, it follows from our hypotheses that we may find a positive constant M
(independent of x) such that for all values of x in T' we may write

|

^'^"+^^ (.r)
|
< M.

Whence, if we place \x\= p we shall have for the given value of x

|r„(.T)|< M jdp = Mp

from which the desired result becomes evident.

Theorem I follows as an immediate consequence of the Lemma upon sub-

jecting the function /(.t) and the region T mentioned in the theorem to the trans-

formation X = 1/x'.

We note also that if, instead of having /(.r) defined throughout a complex

region T, it is given as a function of a real variable x within the infinite interval

(a, + °o ), we may obtain in like manner the following Lemma and corresponding

Theorem

:

Lemma II. " Let (p{x) be a function of the real variable x which, together

with its first n -\- 1 derivatives, is continuous within the interval (0, h), the end

point X = being excluded. If, then, the limits ^(+ 0), ^'(+ 0), (^"(+ 0),

• • •, (p("+^^(+ 0) exist, we may write for values of x in (0, 6)

<p{x) = ao + (iix + atx"^ + • • • + fln-i-^'""^ + Wn + '-uGiOl-i'"; lim r„(.r) = 0,
a=+0

ao, a\, 02, ••-,«„ being constants determined by the equation

ak = ^^'^^1 ^^
{k = 0, 1, 2, ',11):'



30 The Maclauein Sum-Formula

Theorem VI . Let f(x) be a function of the real variable x which, together

with its derivatives of all orders is continuous throughout the infinite interval (a, + <» )

.

If upon placing ip{x) = fiXJx) the following limits exist:

<^(+0), <p'(+0), ^"(+0), •••, .p(">(+0),

we may write for values of x in {a, -\r oo

)

/(.)~a„+a.(l)+«.(y'+---+a,(^^)"+...,

where

<P''\+ 0)
z n 1 7

17. We observe finally that the use of the symbol ~ is frequently broadened

as follows: " If/, ^ and \p are three functions of x such that in the sense of § 13

we have

1^ x x^

the same relation may be written in the form

(63) /~co+aoi/' +— + -^+ •••.

Thus we write when x is real and positive (cf. § 12)

log r(a-) ~ (a: - I) log a: + a; + I log 27r +^ - - ^^ -3+ • • •.

Relation (52) may furthermore be written in the simple form / ~ ao, this

being especially true in applications of the theory (such as the determination

of lim /(.r)) wherein the values of the coefficients Oi, 02, 03, • • • play no part.

Likewise, relations of the form (63) may be written / ~ ^ + oo^-



CHAPTER II

THE DETERMINATION OF THE ASYMPTOTIC DEVELOPMENTS OF A GIVEN
FUNCTION

18. Let F(z) be a given function of the complex variable z defined throughout

the finite z-plane and such that (a) the point z = oo is a non-polar singular point

and (b) when
1 2 1 is sufficiently large and arg z lies within a given sector A (center

at z = 0) there exist two functions /^(z) and (p),{z) each defined throughout A

and a set of constants ao, a> Qi. aj (I2, \,
' '

' dn, k, '
'

' such that for values of 2 in A
w^e have

r/ N ^ / ^ I / N r ,

ai. A , ^2, A , ,
ttn, A + ^A.nCg) 1

F(Z) =/a(2) + <^a(2)[«0.A+-^H-^H 1

-n
J;

lim WA.nCz) = 0.
|2|=00

Then, according to the definition of § 13 and the remarks of § 17, we may write

for the indicated values of z

F(z) ~ A(z) + <p,iz) [ao.x + ^'-^^^'+ '-']'

This form of asymptotic development is of frequent occurrence and of prime

importance in analysis. The problem of determining for a given Fiz) and A

the corresponding /^(z), <px{z) and ao,x, «i.a> «2.a, • • • (assuming that they exist)

is usually one of considerable difficulty and, when regarded in a general sense,

is one for which but fragmentary results exist at the present time. The known

determinations appear to be either those for special functions of importance in

Mathematical Physics, such as Bessel's function J„(2)/ or for certain types ot

integral functions, notably those defined by infinite products."

In the present Chapter it is proposed to show how the general theorems of

Chapter I may be used, at least in certain cases, to make the above indicated

determinations. In doing this we shall merely consider certain special functions

F(z). No attempt will be made to obtain theorems of great generality, partly

because of the difficulty of such an undertaking, but chiefly because of the bcliet

that a few well-chosen illustrations suffice to adequately impart the spirit and

possibilities ot the method employed. In each of the functions F(x) considered,

'See for example Lommel, "Studien iiber die Bcsscl'schcn Functionen " (1868), § 17.

'^ See for exumplc Barnes, Philosophical Transactions, Vol. 199A (1902), pp. 411-500;

ibid., Vol. 206A (1906), pp. 249-297. Each of these memoks contains an extended bibliography

of the subject. See also Mattson, "Contributions h la Th^orie des Fonctions entiSres " (Thdse),

Upsala, 1905.

31
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only the functions /a (2), ^^(2) and the first one of the constants a„,x which is

not equal to zero are determined, since these three determinations constitute

what is essential to the study of the behavior of F{z) for large values of |2;|.

The method, however, permits equally of the determination of any one of the

coefficients fl„, a-

The functions F{z) considered fall into two classes: (a) those defined by

infinite products and {b) those defined by infinite series. Under (a) we have

eventually considered (§§ 24-28) the asymptotic behavior of the general integral

function of order > —a problem to which considerable attention has been

devoted in recent years^ and in connection with which we have entered into

considerable detail owing to the importance of this and other analogous con-

siderations in the general theory of functions. Under (6) we have eventually

considered (§§28, 29) the asymptotic behavior of functions defined by power

(]\Iaclaurin) series—a subject of evident importance owing to the essential

role of such series in anahsis. The treatment for the latter is brief and indeed

but fragmentary, yet it is believed that the most important known results (aside

from those which concern the solutions of linear differential or linear difference

equations)^ have been indicated.

The determination of the asymptotic character of functions defined in other

ways than as infinite products or infinite series might well have been considered

also in the present chapter, as likewise the corresponding problem for certain

noteworthy special functions.^ We have, however, limited ourselves in the

manner indicated above, feeling that not all aspects of the subject could receive

treatment within the limits of the chapter while those of the greatest permanence

in the general theory of functions have been included, we believe, through the

present selection.

19. Example 1. To obtain asymptotic developments for the function

°°
1

^^^ ^^'^=S(2M=T)H^^'

We here choose a function which, as a result of the well-known formula^

tan 2; Y^ 1

^' "="(2^+1)2^-22

* See note at the bottom of page 44.

* See Chapter III.

* For miscellaneous investigations of this description, see Barnes, Edinburgh Trans.,

Vol. 19 (1904), pp. 426-439; Proceedings London Math. Soc, Vol. 3 (1905), pp. 273-295; ibid.,

Vol. 5 (1907), pp. 59-116; Transactions Cambridge Philosophical Soc, Vol. 20 (1907), pp. 253-

279; Quarterly Journ. of Math., Vol. 38 (1907), pp. 116-140; Hardy, Quarterly Journ. of Math.,

Vol. 37 (1906), pp. 369-378; Littlewood, Transactions Cambridge Philosophical Soc, Vol. 20

(1907), pp. 323-370.

^ See, for example, Tannery's " Introduction h la Thdorie des fonctions d'une variable
"

(Paris, 1886), § 117.
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may be evaluated in the form

TT e''^ — 1

(2) n^-i.7^x-

and this fact will enable us to check our subsequent results.

In order to obtain the asymptotic developments of F{z) as defined by (1),

let us place

^'^'^^ ^
{2io + 1)2 + z"

and regard z as having any fixed value z — j) -]r iq, i = V— 1, lying in a sector

(center at z = 0) situated in the right half of the z complex plane and having

neither of its bounding lines coincident with the axis of pure imaginaries. Then

fz{w), considered as a function of the complex variable w = x + iy, satisfies the

conditions demanded by Theorem IV {a = 0) of Chapter I, except that in case

I
g I

> 1 the same function will present a single pole of the first order at the right

of the pure imaginary axis, this pole being situated at the point iv = l{— 1 — iz)

if g > 1 and at the point iv = |(— 1 + iz) if g < — 1.

Thus we may apply the theorem, subject to the remarks of § 11, in order to

obtain an expression for the sum

x-l

H fz(x); x>p.
x=0

We shall now distinguish between the following four cases: (a) |g|< 1,

(b) q>l,{c)q< -lAd)q= ± 1.

In (ft) we may make direct application of the theorem. Taking m = 0, we
thus obtain

^^^ £ {2x + 1)2 + z^ ^^'""^X (2a: + 1)^ + z^
~ ^ '

{2x + 1)^ + z^ + "^^•''^'

where

(4) U^{x) = - *
J g2^y _ I

— dy

and

(5) c. = 2(rT^) ~ "^^^^•

In these results let us now allow x to increase indefinitely, observing that

r dx If 2a: + 1
1^="

tt 1 1

f /o I i\2 I

—2 = TT ^rc tan = -. — arc tan -
Jo (2.r + If -\- z^ 2z\_ z J^=o 43 2z z

and that lim Q.z{x) = 0. We obtain
a;=<»

4
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r^. .
-^

,

1 1 1

4z 2(1 + Z-) 2z z

(6)

p r 1 1 1 dy
+ Vo L (1 + 2iyr- +z' (1 - 2i»2 + 2^ J e'^y - 1

*

Upon developing the various terms of the second member in ascending powers

of 1/z, we thus reach (Theorem V, Chapter I) the relation

in which the coefficients 02, oa, cig, • • may be evaluated to any desired point.''

In case (6), equation (3) and hence (6) also, will continue to hold true ac-

cording to § 11 provided that we subtract from its second member the residue

of the function

/o^ M
""^^

[{2w + 1)' + zV'"" - 1]

at the point w = — ^{l -\- iz) which (residue) is readily found (cf. (30), Chapter

I) to be 7r/22(e"^ + !)• Since, for values of z within the proposed sector, this

function is developable asymptotically in the form (50) of Chapter I with

flo = «i =02= • • • =0,

it follows that relation (7) holds true also in case (6).

Similarly in case (c) we have equation (6) except (cf. § 11) that we must now
subtract from its second member the residue of (8) at iv = ^{1 — iz) and also

that of the function 2Trifz{iv) at the same point; i. e., we must subtract the ex-

pression

2z(e-''' +1) ' 2z 2z(e'"' + 1)

"

Thus, as in case (c) we see that relation (7) again holds true.

Moreover, the same relation continues in case (d) as appears by writing

F{z) in the form
1 CO 1

1 + 22 ' „^ (2r^ + 1)2 + 22

and applying the method of case (a) to the summation here appearing; also

recalling that in one and the same region there can exist but one asymptotic

development for a given function.

Similarly, if we note the effect in (4) of supposing the real part of z to be

negative, we find that when z is situated in a sector lying within the left half of

^ It may be noted that by using a sufficiently large value of m in applying Theorem IV (Chap.

I) we may obtain any one of these coefficients in a relatively simple form involving the Bernoulli

numbers.
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the plane, relation (G) continues to exist provided that the term rj-iz be replaced

by — 7r/4z.

Thus in summary we may say that throughout any sector (vertex at z = 0)

of the z plane tvhich does not contain portions of the pure imaginary axis, the function

F(z) defined by (1) may be developed asymptotically in the form

wherein the upper or lower sign is to be taken according as we are dealing with a.

sector in which the real part of z is positive or negative.

This result, which is at once seen to be consistent with the known relation

(2), illustrates in simple manner the way in which asymptotic developments for

a given function may be ascertained, at least in some cases, by means of the

general theorems of Chapter I. This will be further illustrated in what follows>

wherein we shall eventually consider cases of much greater generality.^

20. In § 19 we have considered asymptotic developments of F{z) (cf. (1))

which are valid in sectors situated in the right or left halves of the z complex plane.

We proceed to show how the same method may yield analogous developments

holding for the upper and lower halves of the plane, exception being made natur-

ally of those (pure imaginary) points corresponding to the values

z = ± (2?i + l)i; n = 0, 1, 2, . • •

at which F{z) becomes infinite.

For this let us consider the function

*(.) = F(i.) = t
(2„ + \y. _ ^.

.

Regarding z at first as real, we place

1

{2W + 1)2 - z2

and again undertake to apply Theorem IV with m = 0. This can be done only

in case ^z(w) is analytic in w throughout the right half of the lo plane. How-
8 In the special instance before us it may be shown that ao = 04 = ae = • • • = 0. In fact

if we substitute in (7) the form for F{z) given by (2) we obtain

42Le'^^ + l J 2z Ll + e^'^^J z^ ^ z^
^

where the upper or lower sign is to be taken according as the real part of z is positive or negative,

and this relation is seen to be true when 02 = 04 = oe = • • • = 0. It is to be noted, however,
that in general if a function is defined by a series of the type of (1) (cf. (12)) no formula analogous
to (2) is at hand. The indicated method for determining the asymptotic development of the

function, however, remains the same, thus leading to cocfTicicnts oo, Oi, 02, •••, which arc in

general not all equal to zero.
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ever, we are concerned with large values of
1 2 1

, and whenever
1 2 1 > 1 it is evident

that ipz{w) will have a pole of the first order within the indicated region at the

point 10 = {z — l)/2 or w = — (z + l)/2 according as z is positive or negative.

Let us first consider that z is 'positive. We proceed to apply the theorem,

subject to the remarks of § 11.

Since the residues r^, r^' of the functions

at w = /3 = §(s — 1) are respectively

K TT

2iz' 2i2(e""+ 1)

so that

' P 2 * ^ Uze""^' + 1

we may write (at least when x > \{z — 1))

t^, {2x +1)2-22 ^''^
4:iz e"'' + 1

(9)
/ ru^-l)-^ r-- \ dx 11

+ e2 V Jo + 4._.He ) (2."+D^^2 - 2 (2.+ 1)2-.^ + "^^•^>

in which Cz and l^zCr) are obtained by changing z^ to — s- in (4) and (5).

But from elementary considerations, the third term in (9) reduces to

i 1

(2+l)(2a: +l-z)
4z ^^ (z- l)(2x+ 1 + 2)'

Whence, upon allowing x to increase indefinitely we obtain (z > 1)

tbr ^ _ ^ g""- 1
,

1
I

1 ,
z+ 1

^V2j
4^.^ g- r. + 1

-^-

2(1 _ ^2)
-+-

42
^Og

^ _ ^

(10)
_i rr 1 1 1 ^y

ijo L (1 + 2^2/)2 - 2^ {l-2iyy- z'^je^"^ - 1

and hence (Theorem V, Chapter I)

^^^)
^(^)^4r2.'^-+^l + 2-^ + 2-+'-->

where 62, &4, ' • • are determinate constants.

This result may now be generalized to all values of z belonging to a sector S

(center at z = 0) lying in the right half of the z plane, exception being made, as

already indicated, of the points z = 2n + 1; w = 0, 1, 2, • • •. In fact, we have

but to suppose \z\> 1 to have in (10) two expressions equal for positive values
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of z and each analytic throughout S and hence equal for all values of z in the

same region.^ Moreover^ the last term in the second member (like the two

preceding) is readily seen to be developable in ascending powers of I/2-, thus

leading to a series which, in the sense of § 13, represents the same term asymp-

totically for all values of z in S.

Likewise, the same relation (11) is found to hold true for a corresponding

sector in the left half of the plane, exception being made of the points

z= - (2m + 1); n= 0, 1, 2, •••

so that, having replaced z by — iz, we may say in summary that throughout

any sector {vertex at z = ()) of the z plane ivhich does not contain portions of the real

axis, the function F{z) defined by (1) may be developed asymptotically in the form

This result is again seen to be consistent with the known relation (2).^°

21. Generalization of Example 1. The method above illustrated for deter-

mining asymptotic developments is in general applicable to functions F{z)

defined by series of the form

^ ^ ,froX(n) + piz)

where 2^(2) is an integral function of z and where \{n), ij.{n) are functions of n

such that Theorem IV, subject to the remarks of § 11, may be applied to the

expression

^'^''^ Mw) + p{z)

in order to find for a given value of z the sum

Z/.(.T).

We observe in particular that by taking 2^(2;) = z'^ (q = integer ^ 1) the

expression F{z) (or the sum of a number of such expressions) comes to include a

wide variety of functions having radial clusters of polar singularities in the

neighborhood of the point z = co—a characteristic common to many of the

more important functions of analysis.

In cases where fz{w) cannot be considered as a function of the complex

' It may be remarked that the last term in the second member of (10) is analytic throughout

S {\z\ > 1) because the improper integral involved converges uniformly for values of z in any

sub-region S' of S whose boundary does not touch the boundary of .S'. (Cf. Oscood, "Encyklo-

padie der math. Wiss.," II, 2, § 6.)

*" In view of the same relation it appears from (11) that in the present simple case we have

bi = bi = b^ = • • • =0 and that the symbol ~ may be changed to =. Cf. note 8, p. 35.
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variable w = x -\- iy but is continuous in the real variable x we may frequently

determine the desired developments by use of Theorems I, II or III of Chapter I

(subject possibly to the remarks of § 10). The manner in which Theorem I may

be thus used will be shown in the following example wherein an important

type of function F{z) different from that of § 19 is taken.

22. Example 2. To obtain asymptotic developments for the function

(12) /(.) = n[i+^:].

As in example 1, this function may be evaluated beforehand and takes the

form
„— T2

(13) ^(^) =S^"
thus furnishing a check upon our subsequent results.

We begin by writing

(14) log F{z) = Elog [l + -H = Hm r Elog (x' + 2^) - 2 Elog a:] .

n^l L ^* J x=ooL:>:=l x=l J

From § 12 we have

x-l

- 2 Zlog a: - - 2 log r(a;) = - log 2ir - 2{x - ^) log x
(15) -1

+ 2x + coi(.r); hm a;i(a:) = 0.
2;=-)- 00

We proceed to apply Theorem I (Chap. I) with m = \ to the first summation

in the last member of (14), taking for this purpose f{x) = log (x^ + 2-) and

supposing for the present that z is real but different from zero. The theorem

may be applied since the series (37) (Chap. I) becomes

fl.Or) = E r
I
J72l0g O^-' + -')

1
<P2(.t)dt,

y=z Jo [
^^

J x=y+t

which, as in (38), may be written in the form

Z j,=a: I
ax ]x= +By

and is therefore convergent.

Thus we have

Elog (a:2 + 2-) = i log (1 + z') + fi.(l)

(16)
'='

..

+
J

log {X" + Z')dx - i log (.t2 + z") + ^,{X).

^* See, for example, Tannery, I. c, § 121.
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Moreover,

/
X

log (.1-2 + z'^)dx = X log (a-2 + s2) -20^+22 arc tan
z

But

so that by combining relations (14), (15) and (16) we obtain

log F{z) = - log 27r - ^ log (1 + z') - 2z arc tan ^+ 2 - 12.(1)

+ limrOi- - I) logfl +^j+ 2zarctan^+ a;i(a-) + 12.(.t)

J
.

lim (^ - I) log ( 1 + ^ )
= 0; lim coi(.t) = 0; lim Q,{x) = 0,

and, supposing at first that z is positive, we shall have lim 2z arc tan {x/z) = ttz.

Therefore, we may write (z real > 0)

(17) log F{z) = - log 2x2+ 7r2 - § log (l + -2 j + 2
(^1
- z arc tan-

j
- 12.(1).

On the other hand, if z is negative we obtain

log F{z) = - log (- 2tz) - ttz - I log
(^

1 + ^ j

(18) . 1

X

+ 2 I 1 - z arc tan- 1 - 12.(1).

We now observe that the expression 12.(1) is a function of z which is single

valued and analytic in any region whose boundary does not cross the axis of

pure imaginaries. Whence, within any region Ai situated in the right half of

the z plane, equation (17) may be used, while similar remarks apply to equation

(18) for values of z pertaining to any region A2 in the left half of the plane. More-

over, if the boundaries of Ai and A2 are not tangent to the pure imaginary axis

at 00, the function 12.(1) vanishes Hke l/z^ when |z|= ^ in Ai (or Ao) and is

developable asymptotically by Theorem V, Chapter I, in powers of l/z^ within

this region. It therefore remains but to apply the result stated in § 15 in order

to say that throughout any sector {vertex at z = 0) of the z plane ichich does not

contain portions of the pure imaginary axis, the function F(z) defined by (12) may

he developed asymptotically in the form

wherein the upper or lower sign is to he taken according as we have a sector in which

the real part of z is positive or negative.
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This result is at once seen to be consistent wnth the known relation (13).^-

23. We proceed to show how asymptotic developments for the F{z) of § 22

may be obtained which will be valid in sectors that may include the pure imagi-

nary axis. For convenience we shall convert this problem into the following:

" To determine asymptotic developments for the function

(19) F{iz) = $(2) = n[^-:^]'

which shall hold good throughout certain sectors that include the real z axis."

Considering at first that z has a fixed, positive, non-integral value > 1, we

proceed (cf. (14)) to study the expression

(20) H(z) = lim r Zlog (x'- - 2^) - 2 Elog a:]
,

x=xi L ^=1 •'=1 J

in which we agree to write log {x- — z-) = log (s- — x-) + iri whenever x < z.

Then e'"^'^ = ^{z).

In order to obtain a form analogous to (16) for the first sum here appearing,

let us place <pziw) = log (ic + z) + log {iv — 2), in which it is understood that

the function log {w — z), considered as a function of the complex variable w,

is rendered single valued throughout the right half of the z("-plane by means of a

cut extending from the point iv = z vertically' downward to the point iv = 00

.

We shall then have

a-—

1

x—1 x-l x—1

(21) E log ix' -z') = Y: <Pz{x) = E log {x + 2) + Z log ix - z)

z=i x=\ i=y x=i

and we may at once apply Theorem IV {m = 0) of Chap. I to the first sum in

the last member, thus writing

Zlog(.r+2) = ^log(l + 2)-fi.(l)

(22)
"""'

+ J log {x + z)dx - i log (x + 2) + n,{x),

where

(23) Q.(x) = -z
J^

log
(^
^^-:;r, ) ^^^VZTJ •

The second sum, however, can not be treated in the same manner owing to the

presence of an essential singularity of the function log {iv — z) at the point

w = z. In this case a related method yields the desired result as we shall now

show.

1^ By means of (13) we may show (cf. note 8, p. 35) that in the present instance

Oj = 04 = Oe = • • • =0.



Special Functions 41

Let us take for this purpose the integral of the function

(p{w)'
f,(w) = log (lo - z), (p{w) = e"^"'"^ - 1

with respect to the complex variable w from the point w = z — ij (j = any

real, positive value, arbitrarily large) situated on the right side of the above

mentioned cut, around the open contour ABCDCEFGFHI indicated in the

following figure, the integration terminating at the same point on the left side of

the cut, and it being understood that the two closed loops CD and FG include

Fig. 2

respectively the points w = 2, 3, 4, - - •
, p and w = p -j- 1, p -\- 2, • -, x — 1,

where p is the integer for which 2? < 2 < /^ + 1 ; it being understood also that the

closed curve BCEFH forms a circle of arbitrarily small radius ^ with center

at the point w = z.

It follows from (30) of Chapter I that we may then write

x—l /-»

J2 log {x - z) = j

x=1 J CD
, ^ dw + I dw,

where CD and GF denote respectively that the indicated integrations take

place in the positive sense along the closed contours CD and GF.

Whence, we have also

(24) Z log (X - z) = log (1 - .) + f^j''] dw - f^"^^ dw,

in which C indicates an integration over the entire contour from A to I, while

L indicates an integration over the open loop ABCEFIII.
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Let us now replace C, as may evidently be done, by the figure in part rec-

tilinear and in part semicircular Abcdefghijkl whose vertical sides (produced)

pass respectively through the points w = 1, w = x. With the understanding

that the radii of the arcs jih, cde are each equal to e, we have now but to refer to

the processes employed in § 8 to see that by taking j = oo we may write (24)

in the form

Z log (.r - 2) = i log (1 - s) - fi_.(l) + J log (w - z)dw

^^^^ '^'
''

r fziw)- \ log (.r -z)- fl_.(.r) + £(6) - y '^^ dw,

where the path M extends from w = \ to to = x over the curve IFECx, where

Zoo denotes the path resulting from L by placing j = co, where 12_z(.'r) is the

expression obtained from (23) by replacing s by — 2 and where E(e) denotes

an expression which becomes infinitesimal with e and may therefore be at once

neglected.

Now,

(26) J ^^^ ^^ ~ ^^^^'^ ^ ^*^^^ ~ ^^ ^^^ {w - z) - w];:=i

= (z — 1) log (1 — 2) + 1 + (a: — z) log (x — z) — x.

Again, we may write

J (p{ic) 2« ^ ^ / & V ' 2-^1 J 10 — z

as appears by an integration once by parts. Whence,

I <pi:w)
die = log [e-2-i(^-ij) - 1] - log [e-2"^'^ - 1].

Upon placing j = co and making use of the relation g-^Tnz _ ^ — _ oie'"' sin ttz

it thus appears that the last term of (25) (the coefficient — 1 included) is equal to

— log (— 1) + log (— 2*) — iriz + log sin ttz = log 2i — wiz + log sin ttz.

Let us now combine relations (20), (21), (22), (25) and (26), availing our-

selves also of (15) and of the facts just observed concerning the last term of (25).

Noting mutual cancellation of terms and placing a; = co in the final result, we

arrive at the relation

//(z) = log sin TTZ — log 27r + log 2^ — iriz — \ log (1 — z^)

+ z log J-^+ 2-12.(1) -^^{l).

If we now write

(1\ 1 — z z— 1

1-^j; Z log j-q^ = TTZZ + 2 log ^-J
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and then introduce the relation

— log 2t — log iz + log 2i = — log irz

we may therefore write

Hiz) = log '^-h log (l - 4) + (2 + . log^) - [12.(1) + fi_.(l)].

Similarly, we arrive at the same result when z has a negative non-integral

value.

Furthermore, the fun3tion

0,(1) + 1^,(1) = -^J ^
log [(i_ij,)3_,,J,-SV^

is single valued and analytic throughout the portions of the 2; plane lying to

the right of the line z = 1 -{- iy and to the left of the line z = — 1 -\- iy while

the same function is developable asymptotically by Theorem V, Chapter I,

throughout the same regions in the form

^2
-1-

^4
-^

2«
-1 •

Noting that for the function $(2) defined in (19) we have $(— iz) = F(z)

where ^(2) is the original function (12), and recalling also that

sin 7r(— iz) e"^ — e""^

7r(— iz) 2irz '

we may say in conclusion that throughout any sector {vertex at z = 0) of the z

plane which does not contain portions of the real axis, the function F(z) defined by

(12) may be developed asymptotically in the form

F{z)
2wz -[^ +f+>

This result is seen to be consistent with (13).

24. We proceed to the following more general problem:

Example 3. Given

or

p = integer ^ 1
^^

p ^ P < p+

1

according as < p < I or p ^ I. To determine asymptotic developments for F(z).

" We adopt the familiar notation exp x for e*.



44 Determination of Asymptotic Developments

This problem, in view of the important role which the F(z) thus defined plays

in the modern theory of integral functions, has already received considerable

attention.^^ Our purpose here will be to deduce through a uniform method based

on the fundamental theorems of Chapter I the known results together w4th

others of a supplementary character.^^

^Ye shall suppose at first that p is non-integral and > 1 (p < p < 2' + 1,

p = integer ^1). Also, for the present z is to be regarded as having any fixed

value (real or complex) except one of the following: 2^'^, 3^'", 4}'^, •
-.

The method then requires that we take for consideration the expression

(cf. (20))

Elog (a:"- z) -o-Zlog.T + EE-( -^ I (^ = Ijp
x=\ x=\ x=l v=l '^ X'*' / J

in which the value to be assigned to log {x" — z) may for the present be taken in

any manner consistent with the equation exp log (x'^ — z) = x" — z.

Then exp H{z) = F{z) where F{z) is defined as above.

We proceed to study the behavior of the first term appearing in brackets

in (27) when x is large.

Following the method of § 23, let us place

f,{w) = log {W^ - 2),

where ic" is understood to be so defined as to be real when w is real and positive

and where the logarithmic function is understood to be rendered single valued

in w throughout the right half of the u'-plane by means of a rectilinear cut ex-

tending from the point w = 2" vertically downward to the point w = co
, the

value of z<' being determined in accordance with the following conventions: if

2 = r(cos (p-\- i sin (p) then z^ = r''(cos pep + i sin p(p) subject to the relation

— 2ir < (p ^ 0. The function fz{iv) having been thus defined and defined

uniquely for every value of w whose real part is positive, let us now impose for

the present the additional condition upon z; viz., real part of z'' > 1; i. e.,

r" cos p(p > 1. Next, let us consider the complex integral

X^'^''^dw; <p{iv) = e^--- 1

c<p{w)

^* See Mellin, Ada Soc. Sc. Fennicae, Vol. 29, No. 4 (1900); Barnes, Philosophical Trans.,

Vol. 199A (1902); Lindelof, Acta Soc. Sc. Fennicae, Vol. 31 (1902), p. 53; Wiman, Arkiv for

matem., Vol. 1 (1903), p. 105; Mattson, " Contributions h la th^orie des fonctions entieres
"

(These, Upsala, 1905); Hardy, Quarlerbj Journ. of Math., Vol. 37 (1906), pp. 146-172; Ford,

Annals of Math., Vol. 2 (2) (1910), pp. 11.5-127.

" It may be observed that this problem differs from the earher more special ones of §§ 19,

20, 22 and 23 in that no formulae are at hand analogous to (2) and (13) by which we can predict

beforehand the character of the solution. The present problem therefore illustrates to good

advantage the value of the methods which we have been using.
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taken from the point ic = z'' — ij (j = any real, positive value, arbitrarily large)

situated on the right side of the above mentioned cut, around the open contour

C = ABCBDEFGHGI indicated in the following figure, which contour, as a

result of the above condition r'' cos pip > 1, necessarily includes the point iv = z''

within its interior, it being here understood, as in Fig. 2, that the point I is the

Fig. 3

one on the left side of the cut corresponding to A and that the closed loops BC
and GH include respectively the points w = 2, 3, 4:, - - •

, q and w = q-\- \,

g + 2, • • •, {x — 1) where q is the integer for which q < real part z'' < q -\- V^;

also that the curve DEF forms a circle of arbitrarily small radius ^ surrounding

the point w = z''.

Corresponding to relation (25) of § 23 we thus obtain

x—l /•

E log {X'' - 2) = I log (1 - Z) - fi,(l) + log (W'^ - Z)dw

- \ log (.1- - 2) + 12.(.t) - {^^^ dw

where M indicates an integration over the path IGFEDBx,^' where L indicates

an integration over the path ADEFI in which, however, the points A, I are

now supposed to be taken at an infinite distance along the cut, and where ^zix)

is given by the formula

1^ In case real pari zp = q = an integer, the indicated loop HG, instead of containing w = q

in its interior, will have this point upon its boundary. To obviate the difficulty thus arising,

let it be understood in this case that the cut does not extend vertically do\\'nward from the point

w = ZP but first extends an arbitrarily small distance to the right of this point and then vertically

downward as before. The reasoning which follows will then apply.

1' In case zp is real and > 1 the path M becomes the curve, in part rectilinear and in part

semicircular, \FECx of Fig. 2; while if imag. part zp < the path M may be taken as the straight

line Ix (Fig. 3).
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or

(29) ^^(-)=-^i
log[^

^_.^^._J^,^,

it being understood that the integrand of (29) is so defined as to be equal for

all values of x and y to the integrand of (28).

Now, an integration once by parts shows that/r dw
log {w" — z)dw = IV log {w" - z) - aw - <^z

J ^^ _ ^
'

Whence,

r C dw . ^^ . ,

log (26"'' - z)dw = X log (.1-'" - z) - ax - az _ - log (1 - 2) + a.

We have now but to recall the formula (15) to see that the first two terms in

the square bracket of (27) combine into the following:

Z log iw" - 2) - 0- Z log .T = -7> log 2tv -\ log (1 - 2)

1=1 x= l -

(30) - fi^(l) + a;(.r) + a + (.r - §) log ( 1 -
^;^)

-x,^.+«.(^)-j; ^(w)

We turn next to consider the third term appearing in square brackets in (27).

By use of the well-known relation^^

11
,

1 , n^~'
, « / s I

r^d^ V(irt p> 0,
!-» = 1 + 21+ 3-,+ • +

(;^3T)-.
+ (-^+''<W; {h^ «,(„) = o

n=oo

wherein f represents the Riemann f function, we may write

(31)

Um ^^(a:) = 0.

Whence, upon observing that the sixth term in the second member of (30) is

of the form
00 V

- Z);,.a.-i+ ^(-^O; lim 77 (.r) =

i*See Petersex, "Vorlesimgen iiber Funktionstheorie" (Copenhagen, 1898), pp. 161-169.
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also that lim Qz{x) = 0, we arrive at the following relation after combining

(27), (30) and (31) and placing x = co

(32) ^(2)=-^og27r-ilog(l-2)-fi.(l)+Er(^^)7+ S(2)- f^^.dw,

where

(33) s(z) = 1-m4 1 + E
(1 _ ,,),,.-. - ^

j,,,;;^^^ J

The properties of <S(2) will be considered in further detail later. For the

present we turn to the last term of (32).

By placing

/. / X 1 / N 7
^^ d^

u = fz(io) = log (iV' - z), dv = ^^ =
^2.i,^ _ 1

so that

<?w = -^ div, V = :z~. log (e-^'^i^ - 1)

it appears that

f-^^ (iw = :^ log (w"^ - 2) log {e-^"'^ - 1)
J ^(w) 27r^

27riJ

(34) ^ ^10"-^ log (e--"^'^ - 1) ,

aw.
ifj"

Now, the difference between the value of the first term here appearing on

the right when considered at the point lo — A and its value at the point w = / is

(35) log [— 1 + exp — 2Tri {real 'part z'' — ij)]

as appears by making the substitution w" = s oi lo = s'' and evaluating the

resulting expression between corresponding s limits. Moreover, by means

of the same substitution the second term in the right member of (34) becomes

(36)
]_ r log [- 1 + exp - 2Trisf]

2ivi J s — z
'

where the integration is extended over a contour in the s plane which includes

no singularities of the integrand except the simple pole aX s = z. But the value

of (36) is evidently the negative of the residue of the integrand at the point

s = z; i. e., — log [— 1 + exp — 2-Kiz''].

Since the expression (35) becomes log (— 1) in the limit as j = oo, it thus

appears that

(37) f-^f'^ dw = log (- 1) - log [- 1 + exp - 2^2%

If in (32) we place log (1 — 2) = log (— 2) + log (1 — I/2;) we may there-
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fore write the original function F(z) in the form

(38) F{z) = A{z)B{z),

where

4(2)— 2p — .2p —
2p,— V— z V27r — I V27rz'' V2xz''

and

(39) B{z) = exp [i:r(^.)^+ 5(.) - 12.(1) - i log
(^1 -^) J.

Thus far we have supposed z to have any value (real or complex) such that

2 ^ 72,1 /p; 11= i^ 2, 3, • • •, and such that having placed z = r(cos (p -\- i sin v?)

and agreed to write z'' = r''(cos pep + i sin p^) with — 27r < ^ ^ 0, we have

r** cos p(p > 1. We now proceed to study in further detail the expression B{z)

and for this it is desirable to remove for the present all restrictions as regards 2,

thus enabling us to determine certain functional properties of the same expression.

We turn first to the expression ^.(l) which appears in B{z) and which by

reference to (29) is seen to be defined by the relation

(40)
^,,, • ^^ [ i^ + wr-z l dy

For a given value, real or complex, of z this 12.(1) evidently has a meaning unless z

be such that the equation (1 ± iyY = z has a real solution in y. In order to

determine the values of z for which this happens, let us place

z = r(cos (p -\- i sin (p)

and make the conventions already indicated as to the meaning of z''. For the

exceptional values in question we must then have 1 ± iy = r''(cos pep zt i sin pep)

so that the same values are those lying on the locus of the equation r*" cos pep = 1;

— 2t < ep ^ 0. Whence, if r be large the same values will tend to have an

argument of the form — {2n + l)7r/2p wherein 7i is a positive integer for which

the same argument lies between — 27r and 0. Again, if the locus just mentioned

be drawn, the z plane is thereby divided into portions in each of which 12.(1)

is a single valued, analytic function of z, since within any sub-region T' lying

wholly within such portion the convergence of the integral in (40) is readily seen

to be uniform. Moreover, if arg z has any value other than one of the exceptional

type just mentioned, we may write lim 12.(1) = 0. In fact, upon reference to
Z

I

=00

Theorem V, Chapter I, it appears that under such hypotheses we shall have

where the coefficients oi, 02, • • • may be obtained by expanding the integrand

of (40) in ascending powers of 1/z and integrating term by term.
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Secondly, we turn to the expression S{z) defined by (33). Since

w" -z ^ ^ivF' w^^iw" - z)

'

we may write

r dw
f.

z" ^^ r dw
2)'

Whence, recalUng that M extends from w = 1 to w = x, we obtain the following

relation

:

where N represents the path obtained from M by supposing a; = + oo

.

In the consideration of this expression we have thus far considered that

real part z'' > 1 and from what has already been noted it follows that if we have

also imag part s^ < we may replace (42) by

(43) Siz)
r^ z" ^^^ r dx 1

''lhl-(Tv ^' X x'-^ix'^-z)]

The form of (42) may also be simplified when i7nag part s*" > {real part

z*" > 1). In fact, we may then write

(44) r ^j^ = r ^ r
^^

where the last symbol represents an integration in the positive sense about the

circle.

Moreover, the last term of (44) is readily evaluated and found to be equal

to 2Tripz''-P-\

Thus, when imag part z" > (real part > 1) we may write

(45) sw-[|:j^„-.-f,-.,(^]+2.,v.

These facts being premised, let us consider the properties of the right member

of (43), all assumptions as regards 2 being laid aside for the moment. Evidently,

the expression in question represents a function of z which is single valued and

analytic in any region T which does not cut the portion of the real z axis extending

from z=lto2:= + oo. Moreover, when
1 2 1 < 1 we find upon expanding

in ascending powers of z that the same expression is developable in the form

(40) <rE™=E—Z_
V

For large values of |z| the properties of the right member of (43) are now
5
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derivable by means of the following Lemma which we shall state and prove at

this point and to which we shall have occasion to refer frequently throughout

what follows.

Lemma}^ If the coeflBcient g{n) of the power series

,,„, v^ / V a = integer, positive, neqative or zero
(47) Z ^(n)z"; . i. ^ n

„=a r = radius oj convergence >

is such that (o) when considered as a function g{ic) of the complex variable

w = X -{ iy it is single valued and analytic throughout all portions of the w
plane lying to the right of (or upon) the vertical line lo = a — ^ -\- iy except for

a finite number of poles situated at the points lo = Xi, X2, • • • , X*, • • • , Xn ; X( =f in-

teger ^ a-° and (6) is such that to an arbitrarily small positive quantity e there

corresponds a positive constant K (independent of x and y) such that

g{x ± iy)

9(.x)
< K exp ey

for all values of .t ^ a — ^ and for all positive values of y sufficiently large, then

the function f(z) defined by (47) when
1
2;

|
< r may be extended analytically

throughout the whole z plane with the exception of the positive half of the

real axis, and throughout this region will be defined by the equation

(48) /(.) = -^J_^ ^;^- dy - Z r,

in which, if we place z = r(cos (p -\- i sin (p) it is supposed that we write

(_ 2)a-.i-f. = exp [(a - i + iy) log (- z)]

= exp [(a — ^ + iy)(\og r -{- i(p -\- irr)]

and take — 27r < ^ < and in which r< represents the residue of the function

(49)
^g(^)(- ^)'^

sin TTW

at the pole w = X<."

For the proof of this lemma let us at first suppose for simplicity that g{w)

has no poles at the right of (or upon) the vertical line w = a — \ -\- iy and let

us regard z for the present as having any fixed value. The lemma then results

from a consideration of the result obtained by integrating the function (49)

" Cf . LiNDELOF, "Calcul des residus" (Paris, 1905), p. 109; also, Ford, Journ. de Math.,

Vol. 9 (5) (1903), p. 223; also. Bulletin of Amer. Math. Soc, Vol. 16 (2) (1910), p. 507.

2" This condition is fulfilled from the fact that g{n) has a meaning when 71 = a, a + 1, a + 2,

• • • . Otherwise the given series (47) would lose significance.

2' This condition is satisfied in particular if constants Ci > and C2 ^ Ci exist such that

Ci < \g{u-)\ <CV
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about the rectangular contour C„ formed in the iv plane by the lines

w = a — ^ -\- iy, IV = ^ + 2n -\- iy, w = a: zb ij

where n is any integer such that 2n > a and where j is any positive quantity,

arbitrarily large. Upon applying (30) of Chapter I to the result of such an

integration, we arrive in the first place at the relation

f'a^ V ^ ^ n 1 r g(^)(-z)"',
(oO) 2^ 5'(w)z" = W-- I

dw.

Supposing at first that z is real and negative, we proceed to study the integral

here appearing in further detail.

First, along the side of Cn upon which w = x + ij we have dio = dx and

sin TTiv = sin 7r(.T + ij) = sinh 7r;(sin irx coth wj + i cos ttx) so that if we call

the contribution from the side in question I, we may write

J =
(- ^y'

r~'- g{x + ij){- zY ^^r2i sinh irj .'tn+s, sin wx coth irj + i cos irx

Whence lim 7=0 provided that
j=ao

(51) lim e-'^gix + ij) = 0; x ^ a - ^.

Similarly, we find the same result for the contribution arising from the side

of Cn upon which w = x — ij provided, however, that

(52) lim e'^^gix — ij) = 0; x ^ a — I.

We observe that both conditions (51) and (52) are satisfied in the present case

as a result of (6) of our hypotheses.

Next, let us consider the side of C„ upon which w = | + 2/i + iy. Here

w^e have div = idy, sin iriv = cos iiry = cosh wy so that having taken i = <»

,

the contribution in question becomes

/=^- z)i+^ n g(^ + 2n+iy){-z)'"
_^

2 Xoo COshTTW
^'

and it follows from (6) of our hypotheses that the improper integral here appearing

has a meaning (z real and negative). Moreover, it follows likewise that if

l^l < r we shall have lim J = 0.
n=oo

Whence, if we now take account of the contribution arising from the remaining

side w = a — ^ -{- iy of Cn, noting that we here have sin ttw = (— 1)""^ cosh iry

while the integration takes place from ?/ = + °° to y = — oo
, we may write

(53) !:,(„),. = (=i)! r .(a-» + «>)(-.r-'^--
^ ^ ^^^a"^ 2 J_«, coshx?/
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This relation must hold good as we have indicated, for all values of z which

are real and negative and such that |z| < r. But the first member represents a

function of the complex variable z which is single valued and analytic throughout

the circle of convergence of (47) while the second member, with the conventions

introduced in the lemma as regards the meaning of (— 2;)°"^+'^ represents a

function of z which is single valued and analytic throughout the whole z plane

except for the positive half of the real axis. In fact, for all values of z in a region

T which does not cut or touch the positive half of the real axis we shall have

from the indicated conventions — t < (p < w so that upon introducing (6) of

the hypotheses it appears that we may choose e so small that the improper

integral in (53) will converge uniformly for all values of z in T. Whence, the

same integral will have the analytic properties just indicated, and we reach in

summary the lemma for the case in which g{w) has no poles to the right of the

line 10 = a — ^ + iy.

That the lemma holds true in the more general case follows at once upon

noting that relation (50) then continues {n sufficiently large) provided we add

to its first member the expression
TO

Er,.

Returning to the second member of (43) which is defined when
1 2 1 < 1 by the

series (46), let us now apply the above lemma to the latter series, taking for this

purpose g(iv) = l/(p — iv). Since the residue of the function

7r(- zr
(54)

(p — w) sin irp

at the pole iv = p is — 7r(— 2) ''/sin Trp, it thus appears that for all values of z

except those real and positive we may write the expression in question in the

form

sm Trp

where

«(p + ^-^y)cosh7r2/^^'

it being here understood that the expressions {— zY and (— 2)""=+''^ are to be

interpreted in accordance with the conventions stated in the lemma, i. e., if

2 = r(cos (p -\- i sin (p) with — 2ir < (p '^ 0, then

(— 2)" = exp p(log r + i(p + iir) = r''[cos p(<p + ir) + i sin picp + tt)]

and
(— 2)-^+'"^' = exp [(- ^ + iy){\og r + i<p + iir)].

Upon referring to (43) and (44) it follows then, as regards the expression
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Siz) originally defined by (33), that throughout any region Ti of the z plane in

which real part z'' > 1, imag part z'' < we shall have

(55) S{z) = '^^^^+R{z),
^ ^ sin 7rp

while throughout any similar region T2 in which real part z'' > 1, imag part z" >
we shall have

S(z) =
''':~^^' + 2Tipz' + R{z).
sm 7rp

Hence, according as z lies in Ti or T2 the expression B{z) defined by (39) takes

the form

Biz) = exp C(z) or B(z) = exp [C(z) + 27rip2;''],

where

c(z) = i;r(^)5+l^'-^iog(i-^)-o.(i) + ij(.).

We note also that since R{z) is equal to l/27ri multiplied by the result of

integrating the expression (54) from ?/= — 00 to y = -\- co along the ^ine

2V = — ^ + iy it follows that we may replace R{z) by a similar expression R{z)

in which the path of integration is w = — k — ^ -\- iy (k = arbitrarily large

positive integer) provided this R{z) be increased by the sum of the residues of

the function (54) at the poles iv = — 1, — 2, - ,
— k. Moreover, since these

residues form the first k terms of a series of the form

(56) ffo + — + -| + • • • ; fli, 02, • • • constants as regards z
z Z"

while lim z'^'Riz) = it follows that the original expression Riz) is developable
I
2

,

= <»

asymptotically in the form (56) (arg z 4= 0).

It follows, then, upon reference to (38) and to the properties which we have

now estabhshed for 12^(1) and R{z) that we shall have the following relation in

which the upper or lower of the double sign ± is to be taken according as z is

confined to T2 or Ti:

Upon observing that when imag part 2" > the function exp iriz'' is develop-

able asymptotically in the form (56) with ctq = 0, oi = 0, • • •, while the same

is true of the function exp — iriz" when imag part z'' < 0, it appears that the

above relation may be simplified into the following holding good for values of z

in regions of either type Ti or T2 :

^, , 2sinxz'' [i-J^\-'', i-zYl
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This relation, as we have noted, holds true only when real part z'' > I. We
now proceed to determine an analogous relation for any region Tz in which

real part z'' < 1.

If this assumption be made at the beginning, the cut in the iv plane falls

entirely outside the rectangle bfgk so that we at once obtain (32) except that

the last term of the second member is lacking. Moreover, the expression S(z)

takes the form (55) so that, upon writing log (1— 2) = log (— 2)+log (1— (l/z)),

we have

H{z) = - ^ log 27r - ^ log (- 2)" - i log (l - i
)
- fi.(l)

(59)

t^l \pj P Sm TTp

and hence
1 rpfy\z' 7r(- 2)M

(60) F{z) ~ ,^ ,

exp E r - -+ • •

Before summarizing the preceding results into a theorem it is desirable to

note certain corresponding results which may be obtained when z'' is confined

to the real domain (!, + «») —a case not included in the above discussion.

Ifthis assumption be made at the beginning the corresponding Fig. 3 becomes

that represented in Fig. 2, except that the cut extends from the point to = z''

instead of from the point w = z. Thus we obtain equation (32) as before with

S{z) defined by (33) in which, however, the path M is now understood to be

IFECx of Fig. 2. We arrive, therefore, at (38) in which A{z) is defined as

before, while B{z) is defined by (39) with S{z) given by (42) wherein N repre-

sents the path IFEC + <». In this form S{z) is now developable (as was (43))

when
1 2 1 < 1 into the form (46) from which we find as before that unless

(p = arg z =

the expression S{z) is given by (55). In other words, S{z) will be given by

(55) when <p has any one of the following values (for which z'' as above defined

is real and positive) except the value ^ = 0:

27r At Qtt 2kir 2kT ^
(61) 0, , , '''-IT' ~'T'>~2^-

p P P P P

Moreover, when cp = 0, S{z) preserves a meaning as appears from (42), provided

that z =1= 1, so that the same expression may be obtained from (55) when z == r

is large by placing therein z = r(cos v? + i sin <p), observing the indicated

conventions as to the meaning of (— zY, (— z)~'+'" and passing to the limit in

the resulting expression as (p approaches the value zero through negative values.

Thus it appears that when z" is real and positive

—

i. e., when ip has any
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one of the values (Gl) —we shall have relation (57) in which the negative sign is

to be taken before the expression iriz'' which appears in the square bracket.

Upon noting the various sections of the z plane which correspond respectively

to regions of the types Ti, Ti and T^, we thus arrive at the following

Theorem I. Given the typical integral function of rank p {order > 0):

with the assumption that p is such that p < p < p -\r I.

If, having placed z = r(cos <^ + ^ sin (p) we agree that z'' and (— zY shall be

defined respectively by the equations

gP = r''(cos p<p -\- i sin p<p); — 27r < (j? ^

(— 2)" = r''[cos p{(p + tt) + 2 sin p{ip + tt)]

then for values of z of large modulus and lying within sectors of the type

-'^^Tr<<p<--^T; A; = 0, 1,2,3, •••; - 27r < <p <
2p /p

we shall have

where f is the symbolfor the Riemann ^function, while for values of z of large modulus

and lying within sectors of the type

-^^^<^<-^^t; /. = 0, 1,2,3, ...; - 2r < <p ^
2p 2p

we shall have

^l2^^z''

provided (p does not have one of the exceptional values 0, — 27r/p, — 47r/p, — Gtt/p,

Moreover, for the exceptional values of (p just mentioned we shall have when
|

z
\

is large

F(z) ~ o„ exp — TTiz'' + 2^ i I
-

I—r TT —. .

*'>/2^ L .t^ \P/^ SlUTTpJ

In the following figure the sectorial regions indicated, I and II, represent

those in which for large values of |s| the first or second of the above forms

holds good respectively, while the dotted lines represent the special directions

along which the third form ai)plies. It is to be understood that the last radial
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line drawn is that upon which (p = — 97r/2p, but that a complete figure would

contain all similar lines upon which

tp =
2k -\- 1

2p
tt; h = 0, 1, 2, and (p "> — 2t,

the scheme of alternate division of the plane into sectors of types I and II being

carried forward up to and including the last sector thus obtained.

Fig. 4

Upon noting that for values of z which are real and positive {z — r) we have

,
x(— z)'' . ,

cos pir -{- i sin pir— TTiz'' + -:77 = — TTir'' + irr'' z-zr~r = Trr'' cot px,
sm Trp sin pT

it appears that the above theorem is consistent with certain results of Hardy to

be found in the Quarterly Journal of Mathematics, Vol. 37 (1905), page 158 (later

corrected on page 373). For values of z for which arg z = (p ^ the theorem

is not altogether consistent with the results of Barnes in the Philosophical

Transactions, Vol. 199vl (1902), page 470, since an equivalent to the first of the

forms above is there assigned to F{z) for all values of z such that ^ 4= ( | s
1

sufficiently large). It is to be observed that both Barnes and Hardy take for

discussion the function F(— z) instead of the F(z) employed above.

25. In the discussion of the function F(z) of § 24 we have thus far supposed

p < p < p + 1 where p is any integer ^ 1. The corresponding results for

cases in which < p < 1 may now be readily supplied, it being understood

that F{z) assumes the first of the forms given at the beginning of § 24.

Proceeding as in § 24, we obtain equation (27) as before except that the

third term in square brackets is lacking. Whence, equation (32) continues

except that the terms involving the function f are absent, while instead of (33)

we have

S(z) = lim 0- 1 — s -^
^=00 L JmIV — zJ

Thus it appears at once that the theorem of § 24 holds true lohen < p < 1
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provided that the term

.7 . 7 ,
y=l \PJV

there appearing be then omitted.

26. We proceed to consider the remaining cases —viz., those in which p = p =
an integer. The function F(z) is then defined by the second of the forms appearing
at the beginning of § 24.

Equations (27) and (30) are now obtained as before, but instead of (31) we
write

Moreover, the last sum here appearing is evidently of the form

c + log X + 02 (.t); lim 02(.t) =
2=00

where c represents Euler's constant.

Instead of (32) we thus obtain in the present case

H{z) = - |log 27r - I log (1 - 2) - fi,(l) + Z i{<Tv)
-

(62)
^ "=' "

+ ccTZ^ -\- S{z) - i'^^dio,

'^ ""
J™ L*^

"^ ^^ - ^) log
( 1 - 7) + ^-^ log X

where

S{z)

(63)

The last term of (62) may now be evaluated as before, leading to equations

(37) and (38) in the latter of which A{z) is defined as before while B{z) is now
defined by the relation

(64) B{z) = exp pi: ^{<Tv) ^' + c<jzP + S{z) - fi,(l) -\\og(\-^\\

In order to study the functional properties of the present function S{z) we
first note that

(.1^ - §) log
( 1 - -^ )

= - I: -^- + e,{x) ; lim ^^{x) = 0,

'y z^ _'-^ z" ^^ 2"
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also that instead of (41) we may now write

^^ 2"
. . .. r dw

Whence,

(65)

r dw "^ 2"
, - , ^1 r «^

J ^^^^, = £ (1 _ ,,)^,^^-i + ^^ i«g ^^ + ^^^ J ,^(,^^-^^-

ice,

L .=0 1 — (TV jN^yio" — 2) J

Upon expanding {w{xo'' — z)]~'^ in ascending powers of I/2, supposing for the

moment that I2I < 1, we obtain

- z^' -r^
—

-^
= - psP E^—[

= P-'' log 1 - 2)

= pi7r2P + 252^ log (2 — 1).

Whence, under the present hypotheses relation (55) becomes replaced by

S(Z) = Z~ <rzP + TTtzP + 2^ log (2 - 1)

or, since

1 _ -
j
= 2P log 2 - Z

^^ _^ l)^v-p+i

= 2Mog2-|^^-f;^^^.; |2|>1,

we may write when
1 2 1 > 1

(66) S{z) = h TrizP + 2P log 2 + r(2),

where r(2) is an expression developable asymptotically in the form (56).

The form (66) for <S(2) is then that which corresponds in the present case

to (55)—i. e., it holds for values of 2 confined to any region Ti sufficiently remote

from the origin throughout which real part 2^ > 1, imag part z^ < 0. The

corresponding form for regions T2 in which real part 2^ > 1, imag part 2^ > is

obtained (cf. (44), (45)) by adding 2iriz'^ to the right member of (66). Thus,

instead of (57) we reach in the present case

(07) F{.z)~^^^^\eriz'' + 'tAlY^+"^{c-l) + z'\oiz\
\2irz^ L v=\ \P / V P J

where = or = 1 according as z is confined to Ti or T^.

Upon observing that when imag part 2^ > the function exp iriz'^ is develop-

able asymptotically in the form (56) with a^ = ai = a^ = • • • = 0, it appears
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that (58) becomes replaced in the present case by

„ . . 2sin7r2P ["^ ^ f v\z''
,

z^
^ ^ , 1F{z) -^

2 exp Zn - -+- c- 1 +2Plog2 .

This relation holds true, then, whenever real part z^ > 1. In case real part

2^ < 1 the equations corresponding to (59) and (60) become respectively

H{z) = -
2^

log 27r - - log (- z)^ - i log
(^1

-
^^

- 12,(1) + mz^

+ |:r(^)^+^(c-l) + 2Mog2+r(2),

Finally, in case z^ is real and positive, i. e., in case (p has one of the arguments

27r 47r Gtt

~7' ~7' ~7' '"'

we find by reasoning analogous to that at the close of § 24 that S{z) vAW be given

by (66) and hence we shall have (67) in which ^ = 0.

In summar}^ we arrive then at the following

Theorem II.-^ Given the typical integral function F{z) defined in Theorem 1
together with the assumption, that p = the integer p.

For values of z of large modulus lying within sectors of the type

4A;+3 ^ ^ 4fe+l \k = {), 1, 2, 3,

2p 2p [
- 27r < v? < 0; (p = arg z

we shall then have

F(z) -^
, exp Xn-)-+-{c- l) + 2Mog(-2)
^2T{-zy L-1 VP/^ P

feV
/J

f being the symbol for the Riemann ^function, and c representing Euler's constant,

while for values of z of large modulus lying within sectors of the type

_ 4A;+1 4k- 1 U' = 0, 1, 2, 3, • .

.

2p '^ < "^ < 2p "" \-2w<<p^0; <p= argz

we shall have

„. , 2 sin TTzP f'v^' / " \ z"
.
2^

,

1
F(z)^ , exp Er(-)- + -(c-l) + 2Mog2 .

V27r2P L i'=i \ 2^ / »' P J

Cf. Mattson (I. c), pp. 15-17.
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27. It will be observed that the integral function F{z) considered in §§ 24-26

is of order > 0. Barnes-^ has also considered the corresponding problem for

certain type functions whose order is eqnal to zero, but we shall confine ourselves

to the case treated above.

Asymptotic Developments of Functions Defined by Pow'er Series

28. The results thus far indicated in the present chapter are but indirectly

applicable to the determination of asymptotic developments for functions

defined by power series. This subject, however, is one of evident importance.

We shall now point out a general theorem in this field, resulting from the lemma

of § 24.

Theorem III. If the coefficient g{n) of the poiver series

(68) 2Z^(w)2"; r = radius of convergence > 0,

may he considered as a function g{ic) of the complex variable w = x -\- iy and as

such satisfies the following conditions: (a) is single valued and analytic throughout

the finite w plane except for a finite nuviher of singularities situated at the points

w = w\, W2, ' • • , Wp, none of which coincide with one of the points w = 0, 1, 2, 3, • • •

,

and (b) is such that to an arbitrarily small positive constant e there corresponds a

positive constant K {independent of x and y) such that

g(x ± iy)

g(.x)
< K exp ey

for all values (real) of x and for all positive values of y sufficiently large, then the

function f{z) defined by (68) (|sl < r) will he such that for all values of z lying in

any sector {center at z = 0) that does not include the positive real axis we may write

,.Q, -., , f^
g(-l) g(-2) g(-3)

(69) f{z) ^ -l^rm ; -^ -^ • • •,

OT=1 2 2 2

where rm represents the residue of the function

wg{w){- zr
(70) Sm TTW

at the point w = Wm-

In order to prove this theorem we observe that for all values of z except those

real and positive we may at once apply the lemma of § 24 with a taken as an

arbitrarily large negative integer: a = — /, and write

(71) Z g{n)z- = i: g{n)z- + f{z) = - Z r^ + et{z),
n=—l n=—l m= l

23 See Philosophical Trans., Vol. 199A (1902). pp. 46G-468.
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where €i{z) vanishes to as high an order as the {I + |)th when
|

z
|

= co
.

Whence

follows the indicated result.

For example, let us consider the function

(72) f{z) = E "
; P 4= integer < 0.

Here we may take

q(w) =

and the residue of (70) at the pole iv = p is readily found to be

7r(- zY
n

sin Tp

Whence, throughout any sector such as indicated in the above theorem we

shall have

(73) f{z) ~ - -^^y -
l^^i^,

-
(^ + 2).^ •

• •

This result ceases to hold when p = a negative integer since the expression

then has a pole of the second order at w = p. Such cases may, however, be

treated by the same theorem. Thus, in particular, when p = — 1 we obtain

directly

log (- 2)
ri = — z

and hence, instead of (73)

,, , log (- 2) 1 1 1

(74) /(^)-^V--^^-2?-3^----

This result may be verified by noting that when p = — 1 the equation (71)

gives

j^r \
log (1- 2)m =—^

—

while the power series appearing in (74) converges when
|
s

|
> 1 to the value

I log (1 — 1/z) so that (74) gives the same form for/(z).

29. Generalizations of Theorem Ill.—li for a given series (68) the function

giw) is not single valued throughout the w plane, but contains q branch points

w = 'Wi, ibi, • • • , Wq, conditions (a) and (b) remaining otherwise the same, the

theorem continues true provided that, after rendering giiv) single valued by

means of q cuts extending vertically downwards^'^ to infinity from the points

2^ Since the series here appearing is convergent for \z\ > I tlic symbol ~ may be changed

to =.
25 More generally, in any direction tending to infinity in the right half of the plane or vertically

upwards or downwards.
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w = Wm', (w = 1, 2, • •
, q) respectively, we subtract from the second member of

(69) the expression
9

m=l

where am represents the loop integral (assumed to exist) of

1 g{w){- zr
2i sin irw

taken in the positive sense from the point w = Um — ioo to the same point after

surrounding the (one) branch point w = fCrn- This result, in fact, appears

directly upon reference to the demonstration of the theorem.

We note that in case the point w = I'Cm coincides with a point of the type

IV = u'm mentioned in the theorem, the corresponding value of rm is to be neglected,

the term am then being evidently the only one of the two to be retained.

A particular type of function f{z) to which Theorem III and these supple-

mentary remarks apply is the following, discussed by Barnes :^^

f r fl\ _ V ^''x(^^ + d) = constant #= or neg. integer,

h (2; ^J - £. (n + ey ' ^ = constant,

where x(l/2) is regular at the origin. Besides this, Barnes considers the corre-

sponding problem for certain special types of functions for which condition (b)

of Theorem III is not fulfilled. Of these latter may be especially mentioned

the function

„ y^ 2" 6 = constant 4= or neg. integer,
J^^{z;d) - Z,

(^4_0)3r(,,_^ 1) ; ^ = constaiit,

for which it is stated-" that for all values of z of large modulus we may write

F,(z; d) ^ <p,{z, 6) + e^z-'^ao+^ + ^+ •••],

where ^3(2; 6) represents the loop integral of the function

_ J^ 2T(- s)

2« {s + ey

taken over the path in the s plane extending from the point 5 = — 00 -f- imag

part {— 6) to the point s = — 6 and return.-^ The values of ao, Ui, az, • • •, are

also given.

This function F^{z', 6) typifies an important class of functions, viz., those

which for an appropriate value of arg z become infinite like e'z'' {k = const.)

" Philosophical Transactions, Vol. 206A (1906), pp. 257, 272, 282.

" L. c, p. 265.

^* Barnes examines in further detail the properties of this loop integral, expressing it in the

form of a series in his final result (p. 265). Cf. also Quarterly Journ. of Math., Vol. 37 (1906), p.

89 et seq; also ibid.. Vol. 38, p. 116 et seq.
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when \z\ is large. In this connection the following more general statement

seems probable,^'^ though a rigorous proof of it cannot be supplied by the author

at present.

" If the function g(n) appearing in the coeflBcients of the power series

may be considered as a function g(iv) of the complex variable w = a: + iy and

as such satisfies the following two conditions (o) is single valued and analytic

throughout the finite w plane except for a finite number of singularities situated

at the points w = Wi, iV2, • • • , Wp (none of which, however, coincide with one

of the points w = 0, 1, 2, 3, • • •) and (6) is such that there exists a constant

(real or complex) jS for which the function

- r(- w)
Giw) =

is developable in the form

T{\-w- /3)

g{y^)

(75)

where

^^''^ ~
2(; + /3"^ (w + ^)(w + /3 + 1)

"*"
{10 + /3)(«^ + /3 + \){w + i3 + 2)

+ ••• +
hn + (^n{w)

(w + mw + ^ + 1) + • • • (w + /3 + n)

'

hm en{io) = 0; — 9 = (^W lo -^^
111-1=00 ^ -^

then, for all values of z of large modulus we may write

-E^n.+ (-2)V| 60 + 7+1+
TO=1

in which Vm represents the residue of the function

= - r(- io)g{w)i- z)

\

Tg{w){- zY

T(iu + 1) sm TTW

at the point w = Wm and in which the coefficients 60, 61, 62,

from (75). "30

29 From considerations based upon the relation

2i J T(w + k) sin tw 2*-^ '^^\z/'

are determined

k = constant ^ 1,

P {
-

) = polynomial in -,

where the indicated integration takes place in any closed (infinite) contour embracing the points

w = 0, 1, 2, 3, •••.

'0 No mention has been made in the present Chapter of a class of power series whose asymp-

totic forms have been studied by Dienes and Valikon. For a concise statement of their results

see Theorems I and II in Valiiion's paper, "Sur le calcul approch6 de certaines fonctions enticres,

"

Bull, de la Sac. Math, de France, Vol. 42 (1914), pp. 252-264.



CHAPTER III

THE ASYMPTOTIC SOLUTIONS OF LINEAR DIFFERENTLAL EQUATIONS

30. The oldest and most fully developed aspect of the theory of asymptotic

series concerns the so-called " asymptotic solutions " of linear differential equa-

tions. In the present chapter we shall undertake to give a summary of the

principal results (without proofs) that have been obtained in this field, with

indications as to certain noteworthy questions still remaining unanswered.

Corresponding results and questions for linear difference equations will also be

briefly considered.

Real Variable

31. Confining the attention at first to the case in which the independent

variable x is real and positive, the investigations referred to may be said to

cluster about the homogeneous linear differential equation

(1) 2/("> + ai(.r)y("-" + a2(.T)2/^"-'^ + • • • + an{x)y = 0,

wherein the coefficients ai, a^, • • •, «« are assumed to be developable for large

positive values of x either in convergent or asymptotic series of the form

arix)
r

,

flr. 1
I

ar.2
.

"I ^ ^
ttr, o+~+"^+---h r=l, 2, •••,n.

h being zero or some positive integer.^ In this equation the point .r = qo is

in general a so-called " irregular point "^ so that the usual " normal solutions
"

about the point x = co , as provided by the well-known theories of Fuchs,

come to involve power series in \jx that are divergent for all values of x.^ Never-

theless, the same solutions continue to satisfy the equation formally^ and it

can be shown that they represent asymptotically, in the precise sense of § 13,

certain actual solutions. In fact, we may begin by citing the following note-

worthy theorem first established rigorously by Horn:^
" If for the equation (1) the roots ??u, W2, • • •, 7n„ of the characteristic equa-

tion— i. e., the algebraic equation

' The integer fc + 1 is termed the rank of (1) at a; = <x> . See for example Horn, "Gewohn-
liche Differentialgleichungen bcheber Ordnung" (Leipzig, Goschen, 1905), p. 187.

2 For an exposition of the definitions and basal theorems in the theorj^ of linear differential

equations, one may consult Picard's "Trait6 d'Analyse" (1896), Vol. 3, Chap. 11.

3 Cf. PiCARD, I. c, § 22.

* Cf. PiCARD, I. c, § 23.

« Cf. Acta Math., Vol. 24 (1901), p. 289.

64
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(2) m" + ai, om"-i + • • • + On. o = 0,

are distinct from one another, equation (1) possesses n linearly independent

solutions yi, y^, • • •
, yn valid for large positive values of x which are developable

asymptotically in the forms

(2') yr ~ e'^'^h^^E^" ; r = 1, 2, • • • , n,

where /r(a:) is a polynomial of degree ^* + 1 in x, the coefficient of whose highest

power in x is mrjik + 1), while pr and Ar, j are constants^ with Ar, o = 1."^

If in this theorem the restriction be removed that the roots of the charac-

teristic equation be distinct

—

i. e., if multiple roots be present—the theorem

fails and we at once encounter a problem for which no general solution has as

yet been obtained. However, Love^ has recently made a noteworthy advance

in this direction, his theorem (which manifestly contains the above as a special

case) being as follows:

If, other conditions remaining as stated above, " the characteristic equation

has I roots mi, TO2, • • • , mi, occurring respectively rii, ri2, • • • , ni times (rii + na

+ '•'-}- ni = n) and such that no multiple root of the characteristic equation

is also a root of the equation

(3) ai, im"-i + a2. im"-^ + h fln. i
= 0,

then the equation (1) possesses a fundamental system of solutions yr,q (r = 1, 2,

'
' , I; q = 1, 2, ' '

'
, Ur) developable asymptotically in the form

rir— l 00 J

where fr.qix) is a certain polynomial of degree nr(k + 1) in .r'"'', the quantities

Pr,q and Ar, q, i, j arc determinate constants, and Ar, q.o,o — !•"

Love has furthermore considered in detaiP the equations (1) of the second

and third orders, including the cases in which (3) is satisfied by a multiple root,

^ The precise values of the coefficients of frix) and of the constants pr, Ar.j may be deter-

mined by the method of undetermined coefficients after substituting y^ in (1). A similar remark

should be understood with reference to the/r,<,(a;), pr.q, etc., that follow.

^ Historically, the first form of equation (1) to be studied in this connection was that taken

by Poincar6 in which Ci, oj, • • •, a„ are rational fractions, thus possessing no other singularities

than poles at x = «=. See Ada Math., Vol. 8 (1886), pp. 295-344.

8 Cf. Annals of Math., Vol. 15 (1914), p. 155.

" Love does not use, at least directly, the method common to the greater part of Horn's
work, viz., that of successive approximations, though the latter could doubtless be employed to

the same ends. His method rests rather upon certain general studies of Dini to be found in Vol. 2

(1898) of the Annali di Mat., pp. 297-324, wherein the equation (1) of the nth order is first con-

verted into a VoLTERRA integral equation of the second kind containing n arbitrary functions,

termed "auxiliary functions," and the latter (equation) solved by the usual process of iteration,

thus yielding forms of solution for the original equation (1). Tlirough the arbitrariness existing
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and has arrived at complete results for these orders.^" Thus, for n = 2 we

have the following :^^

" In the differential equation

2/" + h{x)y =

suppose that b{x) is a real or complex function developable asymptotically for

large real positive values of x in the form

Hx) ..«[^. + ^+...],

where )!: is or a positive integer. Then, for the same values of x equation

possesses two hnearly independent solutions yi, y^ such that (a) if ho =t= 0, i. e.,

if the roots mi, m% of the characteristic equation m^ + &o = are distinct, we

may write

^, ~/'^'>a:''^[l+^'+ •••], r= 1,2,

where
TiirX^^^

,
ar.-fca:^

/'(^) = ^ipT "^^ !-•••+ «r.-l.T;

1,2,

(Jb) if 6o = 0, 6i 4= we may write

2/.^^'-^vTi+^^+--- +4(^^.0+%-+

•

where

(c) if ^- = 6o = ^1 = we may write in general

yr'^x''^^l+^+ •••], r= 1,2;

(d) but if p2 = pi or, in general, if p2 — pi is a positive integer we have

in the choice of these auxiUary functions, the resulting solutions, though frequently complicated,

are of great flexibility and it thus becomes possible to adapt them to a wide variety of investi-

gations, as DiNi himself has abundantly shown in a series of papers in the Annali di Mat. extending

over the years 1898-1910. In the case of studies such as are being considered in the present chap-

ter, the method readily provides actual solutions that are valid for large (positive) values of x

and thus the problem becomes merely that of showing that the auxiliary functions may be chosen

in particular in such a way that these solutions are developable asymptotically in the sense of § 13 .

10 Cf. Am. Journ. of Math., Vol. 34 (1914), pp. 165-166.

" For the sake of completeness the case of unequal roots, though covered by the above

mentioned theorems, is included in the statement.

12 It will be obscr\'ed that (6), (c) and (d) relate to the cases in which ?«i = W2. If in (c)

or (d) the series for bix) converges for all \x\ > R then x = <» is a " regular point " of the differ-

ential equation and hence in the results for yi and 2/2 the sign fo may be changed to =
; lx| > R.

12
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2/2 ~ 2/1 log X + x""- yl2, + -^ + • • • •"

The complete result for the equation of the third order is as follows

:

" In the differential equation

y"' + h{x)y' + c{x)y =

suppose that h{x) and c{x) are real or complex functions developable asymp-

totically when X is large and positive in the forms

where A; is or a positive integer, and suppose that h'{x) also has an asymptotic

development. Then for the same values of x the given equation has three linearly

independent solutions yi, yi, yz possessing asymptotic developments as follows:

(a) If the roots mi, mi, mz of the characteristic equation

m^ + hum + Co =
are distinct, we may write

where

,/A)^P.[^14.^i_|_

...J.
r= 1,2,3,

irirX^'^^ ar,-kX^

(6) If Ml 4= m2 = Ws we may write in general

where /i(.r) has the same form as in (a) and

(c) But if in (6) ps = po, or in general if pa — P2 is a positive integer, we have
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2/3 ~ 2/2 log X + e^'^'h'' \Az, o + -^' + ' '

'

J
'

where /i (a:) aiid/2(.r) have the same form as in (a).

(d) If 7?zi = 7712 = W3 and either Ci ^ or 6i = Ci = 0, C2 =[= we may-

write

where

(e) If c\ = 0, 6i =}= 0, 2/1, 2/2, 2/3 h^ve expansions of the same form as in (6).

(/) If I' = 6i = Ci = C2 = we may write

^2/1 log a: + x^' ^2. o + -|^ + • • •
,

£2/1 log2 .T + .T^Uog a: [ 53. + ^^+ • • •

] + .T"' [ ^3, +^+ • • •

]
.

13

While the complete results for the equation (1) of order n ^ 4 have not as

yet been obtained, a careful examination of those just given for 7i = 2, 3 throws

light upon what the corresponding forms may be expected to be. Moreover,

in connection with this question the following result should be noted:"

" Let T(.r) be one of the system of functions

^^^' .^'" .T(logx)i+'" .T log a:(log log .r)'+'" *"' ('' > ^^

and put

Xoo
T{x)dx.

1' It will be observed that (6) and (c) refer to the case ?«i 4= w?2 = m% while (d), (e) and (/)

refer to the case m\ = m-i = mz. If in (/) the series for h{x) and c(x) converge for all lx| > i?

then X = 00 is a regular point of the differential equation and hence in the results for yi, 7/2 and yz

the M may be changed to =; |x| > R.
" Obtained by Dini for the case in which the roots of the characteristic equation all have the

same real part, and partially obtained by him when this restriction is removed {Annali di Mat.,

Vol. 3 (1899), p. 136. The result has recently been established in its entirety by Love in the

American Journal of Mathematics.
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Suppose now that in the differential equation

(4) 2/(") + [ai + ai(.T)]2/(«-i) + [a^ + «2(a:)]2/("-2) +... + [«„ + a„(y)]y = q

the functions ai{x), a2(x), -- -, an(x) together with their 2n — 1 derivatives are

continuous when x is sufficiently large, and suppose that the characteristic

equation

(5) M" + aiM""' + h fln =

has I different roots jui, 1x2, • • •
, m occurring wi, 712, • • •, ni times respectively

(ni + n2 + • • • + w; = n) and let n' be the largest of the numbers Ui, 112, " -,711.

If one of the functions t(x) exists such that for sufficiently large values of x

(6) |ar«(.T)|^^J^; r= 1, 2, ...,7i; s = 0, 1, •, 2n - 1,

then for the same values of x the equation (4) has n linearly independent solu-

tions T/i, k{x) expressible in the form

Vi. k(x) = a;^-ie-'^[l + e,-, ,(x)]; i = 1, 2, - - -, I; k=l,2, -- -, m,

where €», A:(a;) vanishes at infinity to at least as high an order as that of Tiix),

while further

yi'Mx) = x'-'e''^'[txi' + ri.fc. s(x)]; 5 = 1, 2, . .
., n,

where lim ^ = 0."
x=ao

It is to be observed that for the special case t{x) = Ifx^ this result relates

to an equation of the form (1) (wherein k = 0), and furnishes the " dominant
terms " of developments for the corresponding solutions yi, k{x). Doubtless

by a sufficiently critical examination of the form of e,,fc(a;), these developments
could be identified with asymptotic developments in the precise sense of § 13.

For the type of equation considered, the result is seen to be in every sense general

so far as the possibility of multiple roots in (5) is concerned, except for the

restrictions (6). These latter when interpreted with reference to (1) mean that

(7) ar.a=0; r = 1, 2, 3, --^n; 5 = 1, 2, 3, • •
-, 2?i' - 1

and hence come to impose unfortunate restrictions. However, the result is of

decided value in showing that all further studies upon the problem in hand
may be limited to those cases (assuming multiple roots present in (2)) wherein

(7) are not satisfied.

Complex Variable

32, Passing to the corresponding studies upon (1) when the independent

variable x is allowed to take on complex values, the existence, form and range

of the asymptotic solutions have been completely discussed by Birkiioff in

case the coefficients ar{x) (r = 1, 2, • • •, ii) are developable in convergent series
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(|a;| > jB = constant sufficiently large) and under the assumption that the

roots of the characteristic equation (2) are distinct.^" Corresponding results

when multiple roots are present in (2) do not appear to have been thus far ob-

tained.

Birkhoff's essential result may be summarized as follows:

" Representing by vii, m^, • • • , tUn the n (distinct) roots of (2), let there be

drawn from the origin (2=0) the N = n{n — \){k -\- I) raj'S ("critical"

rays) determined by the equation

real part of [{vig — m<)a:'=+^] =0; s =^ t.

Let the angles which these rays make with the positive real axis in the order

of their increasing magnitude be denoted by n, T2, • • -, r^r and place Ty+i = ri

+ 27r.

Then, corresponding to the sector Tm = arg x < tm+i there exists a set of

fundamental solutions pr {r = 1, 2, •••, n) of (1) developable asymptotically

in the forms (2)' where fri^), pr and Arj continue to have the meanings there

indicated.

The set of solutions satisfying (2)' in the sector (jm, r^+i) differs at most

by one solution from the set satisfying (2)' in the adjacent sector (r^+i, 7^+2)."^®

Linear Difference Equations

33. If instead of (1) we take for consideration the linear difference equation

(8) yix + h) + ai(x)y{x + ^ - 1) + a2{x)y{x + A - 2) + • • •+ an{x)y(x) =

wherein the coefficients oi, 02, • • • , On are assumed to be developable for large

positive values of x either in convergent series or asymptotically in the forms

(8)' ar{x)^x^'^^ar,o +^ +^+ •••]; r= 1,2, --^n,

1^ Trans. Am. Math. Soc, Vol. 10 (1909), pp. 463-468. Birkhoff considers, instead of (1),

the system of n ordinary linear equations of the first order:

(A) ^= t,c'iiix)yi a = 1,2, ',n),

in which for |a;| > R -we have

a.-,- (a;) = ai^xt + a.-, y^'x'-i + • • • + ai/«> + ai,f«+i) 1+ • {i,j = 1,2, ••,n),
X

the characteristic equation then becoming

|a,-,- — 5,-,a| = 0; 5,-j =0 if i =t=j; S.y = 1 if i = 3.

The equation (1) may be transformed into a sj'stem of the form {A) by placing y\ = a;"*;/,

7/1 = x<"~i>*y', •••, y„ = x*2/'"~^> in which case we find q = k. Thus, whatever appUes to {A)

applies to (1) as a special case with q = k.

The important case in which the coefficients ar(x) of (1) are rational polynomials was dis-

cussed in a series of earlier papers by Horn whose results are summarized by Van Vleck in the

Boston Colloquium Lectures (1905), pp. 85-92.

1^ For the precise nature of this dependence, see Birkhoff, I. c, p. 468.
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k being zero or a positive integer, we have, corresponding to the first result cited

in § 31, the following:

" If the roots mi, m^, ••-,?«« of the characteristic equation

(9) TO" + ai,om"-i + h fln.o =

are distinct and no one of them equal to zero, equation (8) possesses n linearly

independent solutions yi, y^, • • -
, yn valid for large positive values of x which are

developable asymptotically in the forms

(9)' yr - [r(;r + l)fm/x<'^Z -^fr' ; r = 1, 2, . •

. , n,
j=0 X

where ^r.o = 1."^^

In case (9) has multiple roots, or a zero root (an,o = 0) the principal results

thus far obtained appear to be those of Norlund who employs asymptotic

" faculty series " and allows the independent variable x to range over complex

as well as real values. Using his notation and including for the sake of complete-

ness the case of distinct roots, his results are as follows '}^

" Given the linear difference equation

k

(10) Z P^{x)u{x - i) = 0,
1=

where the coefficients are faculty series of the form

Pi{x) = co^') + —_|_-y+ (a:+ l)(a: + 2)

(11)
(0

{x+l){x-r2){x-\-3)+ 7—r-rT^V7^v7r-^^+ •••; i = 0,1,2, -••, k

all of which converge throughout the right half of the x plane.^^ Suppose first

that the roots ai, a^, az, • • •, a^ of the characteristic equation

(12) co^o^z*^ + Co">2^-^ + V co^^) = 0; Co^"^ 4= 0, Co^^'^ +

are distinct. Then there exist k solutions U\, ii2, - • -,Ukoi (10) such that through-

out the sector — (7r/2) + e < arg x < (7r/2) — € (e arbitrarily small and > 0)

we have

nQ^ . r(.T + 1)
(13) ^.— «/r(.r-p,+ l)^^^^^'

where py is a constant and <pj{x) a faculty series of the form indicated in (11).

1' Cf. Horn, Journ.fiir Malh., Vol. 138 (1910), p. 159.

18 "Kongelige Danske Videnskabcrncs Selskabs Skriftcr " (M6m. de I'Acad. Roy. des Sciences

et des Lettrcs de Denmark), Vol. 6 (1911), pp. 317-318. It would appear that the proofs of the

results here stated have not as yet been published except in part.

1^ A very broad class of series of the form (11) have this property. See for example Nielson
,

"Handbuch der Theorie der Gammafunction," Leipzig (Teubner), 1906, § 96.
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In case (12) has multiple roots and a/ is an n-fold root, Norlund distinguishes

two cases:

(1) aj is at the same time an {n — p)-fold root of the equations

k

YjCp^'h^-' =0; p = 1, 2, • • •, w - 1.

(2) These conditions are not fulfilled.

In (2) no asymptotic development exists of the form (13).

In (1) there exist n linearly independent solutions Us{x)\ s = \, 2, •••, n

such that when — (x/2) + e < arg x < (7r/2) — e we have

Us ~ a/^s{x); s = 1, 2, 3, • • •, n,

where

^r ^ f ^
r(a:+ D , , ,

^ r(:r + 1)
,

^s(x) = (po{x)=rr- 777^+ ^iW
T(x - ps+l) '

"^'^ ' dp, T{x - ps+l) '

,
.^3" r(a:+l)

dp/ T{x - ps+1)'

the expressions (po, (pi, • • • , <Pn being developments of the form (11).

If some of the roots of (12) are zero or infinite, it is necessary in order to obtain

a system of fundamental solutions to use a series of substitutions of the form

u{x) = [V{x)Y^u'^''^\x) = T'''^{x)u^^'-\x)

and determine p.r so that the difference equation in w^'^'^(x) shall have a charac-

teristic equation containing at least one root which is finite and different from

zero. It is always possible to determine in but one way a series of numbers

Mi> M2> • • •
J Mm such that the total number of roots which are finite and different

from zero in the corresponding characteristic equations thus obtained is exactly

the order k of (10).^° If, whenever a multiple root occurs in one of these charac-

teristic equations, the corresponding conditions under (1) are satisfied, then

there exists a system of fundamental solutions of (10) each of which is asymp-

totically represented within the sector — (7r/2) + e < arg x < (7r/2) — € by a

series of the form
V>''-{x)af^s{x).

Exceptions occur, however, when some of the numbers iXr are not integers, since

the coefficients in the above-mentioned difference equations are then no longer

developable in faculty series of the form (11). For example, suppose jur = a

rational fraction j^jq. We may then put x = yz, u(x) = v(z) and derive from

(10) a difference equation for v{z), thus demonstrating the existence of solutions

expressible asymptotically in the forms

r

" Norlund, Ada Math., Vol. 34 (1911), p. 16

"(i)
"'"'*•©•
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Important studies of (8) when x is complex and under the assumption that

the roots of (9) are different from zero and distinct and that the coefficients

ar{x) are rational fractions developable in the forms (8)' (wherein the series would

then converge for all \x\ sufficiently large), have been made also by Galbrun^^

and by Birkhoff,^^ with the essential result that there exists a system of funda-

mental solutions G(x) = yi, ?/2, ys, • • •
, yn developable asymptotically in the

respective forms (9)' throughout the right half of the x plane, and at the same

time there exists a second system H{x) = yi, 7/2, • • -, yn of fundamental solutions

developable likewise in the forms (9)' but throughout the left half of the plane.

Moreover, the elements of the system G{x) when considered in the left half

plane possess asymptotic developments other than (9)' whose forms change as

arg x passes through any one of certain radial directions (" secondary critical

rays ") lying in the second and third quadrants,^^ while similarly the elements

of H{x) when considered in the right half plane are developable asymptotically

in forms differing from (9)' and changing as arg x passes through certain radial

directions situated in the first and fourth quadrants.

Returning again to the case in which x is regarded as real and positive and

assuming further that it is confined to integral values, we have, corresponding to

the last result stated in § 31, the following i^'^

" Let t(x) be one of the system of functions (3)' and put

00

Ti{x) = S r(.Ti).
Xl=Z+l

Suppose now there is given a difference equation

[ao + aQ{x)]yix + n) + [ai + ai(x)]yix + ?i — 1) + • • •

(14)

+ [«n + an{x)]y{x) = 0,

whose characteristic equation

aoM" + aiix''-^ + . .
. + a„ =

has I different roots )Ui, 1x2, - - •
, Hn occurring n\, ni, - - - , ni times respectively

(jii -\- 712 -\- ••-{• ni = 11) and let n' be the largest of the numbers ni, n2, • • • , nu

21 Acta Math., Vol. 36 (1913), pp. 1-68; also Comvt. Rend., Vol. 148 (1909), pp. 905-907.
22 Trans. Am. Math. Soc, Vol. 12 (1911), pp. 243-284. As in his studies on linear differential

equations (cf. footnote, p. —), Birkhoff considers a system of linear difference equations of the

first order. In order to identify the forms (9)' with those occurring in his results, it suffices to

observe that

r(x + 1) ~ x'+^'h-'(^co + ^ + §+•••) •

See for example Horn, Math. Annalen, Vol. 53 (1900), p. 191.

2' For the precise statement, see Birkhoff, I. c, p. 277-278. See also p. 279, lines 1-7.

2* Cf. Love in Afn. Journ. Math. Obtained earlier by Ford in case all roots of the charac-

teristic equation have the same modulus {Annali di Mat., Vol. 13 (1907), p. 328).
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If a function t{x) exists such that for sufficiently large values of x

t(x)
\cxrix)\^^;^^; r = 0, 1, 2, ..-, n,

then for the same values of a: the equation (14) has n linearly independent solu-

tions ?/,-, k{x) expressible asymptotically in the forms

Vi, k{x) ~ .r^-Vi11 + ^i. k{x)]; i = 1,2, '-'J; k = 1,2, '-, iii,

where e;, u vanishes at infinity to at least as high an order as that of Ti(a')."

Summary

34. A comparison of the results noted in §§ 30-33 would indicate that the

study of the asymptotic solutions of either the differential equation (1) or the

difference equation (8) is already in a fairly satisfactory state provided the

assumption be made throughout that the roots of the characteristic equation

are distinct, but much remains to be done in those cases where multiple roots

are present. In fact, it is only for the equation (1) of the special orders n = 2

or n = 3 that we find what could be described as a complete discussion, and

even this has thus far been carried out only for the real variable x.



CHAPTER IV

ELEMENTARY STUDIES ON THE SUMMABILITY OF SERIES

35. Introduction.—The divergent series

(1) 1- 1 + 1- 1 + 1- 1+ ..•

was regarded b}^ Euler^ as having the sum | on the ground that the expression

1/(1 + X) gives rise by division to the series

(2) 1- x+ x" - x' + x^ - x^ + • • •,

so that in particular (placing x = 1) one must have

(3)
i= 1- 1+ 1- 1 + 1- 1+ •••.

In general, the " sum " of a series (convergent or divergent) was taken to be the

number most naturally associated with it from the standpoint of mathematical

operations. This conception, however, naturally led to inconsistency. Thus,

by developing the expression (1 — .t")/(1 — a;"") into the form

(4) 1 - a;" + a;"* - .t"+^ + x-"" - • • •

,

and noting the result when a: = 1 we obtain for the series (1) the sum n/m instead

ofi
The notion of sum as thus loosely conceived was eventually replaced by the

exact definition of Abel and Cauchy according to which the sum of any series

(5) ao + ai + a2 + as + • •
•

is taken to mean the limit

(6) s = Hm (oo + ai + 02 + • • • + On).

Series for which this limit exists were termed convergent, all others divergent.

Of the two classes of series thus arising, the former occupied almost exclusively

the attention of the immediate successors of Abel and Cauchy and to such an

extent that all divergent series came to be regarded as of questionable value and

indeed of doubtful significance. It is a noteworthy fact, however, that Abel
and Cauchy themselves never ceased to regard divergent series with much
interest and with the belief that such series should by no means be banished from

analysis for the mere reason that they fell outside the pale of the particular

1 For a more extended historical account, see Borel, " Lemons sur les Series Divergentes"

(Paris, 1901), Introduction.
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definition (6). Each felt on the other hand that the subject presented a rich

field for further research.

Only since the time of Weierstrass has the question thus arising

—

viz.,

whether any numerical significance can properly be attached to a divergent series

—been scientifically attacked and in large measure answered. The avenue of

approach has been chiefly through the so-called boundary-value (Grenzwert)

problem in the theory of analytic functions.^ Thus, Frobenius^ showed in the

first place that if
00

(7) Z dnX""
n=0

be any power series having a radius of convergence equal to 1, then

(8) lim 2^ a„.T" = lim -j—. ,

ar=l—On=0 n=oo 71 -J- i

where Sn = Oo + oi + 02 + • • • + Qn- This was shown to be true, at least,

whenever the limit indicated on the right exists. Now, the first member of (8)

is naturally associated with the series (in general divergent)

00

(9) Z an,

SO that it becomes natural to associate with the latter the sum

50 + 5i + 52 + • • • -\- Sn
(10) s = lim

n-\- 1

whenever this limit exists. Formula (10), regarded as a general formula for

defining the sum of any given divergent series (9), finds additional justification

in the demonstrable fact that for any convergent series (9) the sum as defined by

either (6) or (10) is the same—i. e., formula (10) is consistent. Moreover, this

selection for s is seen to bear an interesting relation to the early statement of

EuLER noted above respecting the particular series (1), since, when applied to (1),

it gives at once 5 = |.

In the present chapter certain general studies are first undertaken (§§ 36-40)

upon a few of the well-known, standard definitions for the " sum " of a diver-

gent series. The definitions selected (which include (10) as a special case)

are subjected in turn to a number of tests which it is believed any such definition

may well be asked to satisfy, and the results attained are summarized in § 41.

2 For a description of this problem see Jahraus, " Das Verhalten der Potenzreihen auf dem

Konvergenzkreise historisch-kritisch dargestellt," Programm des Kgl. humanist. Gymnasiums

Ludwigshafen a. Rhein (1901), pp. 1-56. See also Knopp, "Grenzwerte von Reihen bei der

Annaherung an die Konvergenzgrenze," Dissertation (Berlin, 1907).

8 Journ.fiir Math., Vol. 89 (1880), p. 262.
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The underlying principles guiding the development of these §§ are stated in

the Preface and hence need not be repeated here.

In the latter part of the chapter the essential properties of "absolutely
summable " series are considered (§ 42) and this is followed by a few supple-

mentary theorems and remarks on the theory of summability in general, proofs

being suppressed when reference can be readily made to them elsewhere.

36. Definitions of Sum.—Let any given series (convergent or divergent) be
represented by

(11) f.Un
n=0

and let us place
n

Sn = 2-^ llri'

n=0

If (11) is convergent let its sum be indicated by S, if divergent let the sum as-

signed to it by whatever manner be indicated by s.

The definitions for s to which we shall confine our attention^ are as follows:

(I) s = \\m-f-(r)'y r = fi^'ed integer ^ (Cesaeo),^
n=oo ^n

where

(12)

S (r^ - , \ rs .1 '^' + ^^
. 4- I

Kr + 1) • • • (r + n - 1)

'^- ni

J. (,) _ (r+l)(r+2) •• (r+n)
n\

Under (I) is thus included as a special case corresponding to r = 1 the definition

(10). The least value of r for which the second member of (I) exists is called the
degree of indeterminacy of the series (11).

* We have confined the attention to what may be called the older and best known forms of
definition, (I) and (II) being connected with the early studies of Holder and Cesaro upon the
boundary value (Grenzwert) problem for functions defined by power series (see § 35), while the
remainder, especially (III) and (IV), are connected with the independent and now classical
studies of Borel upon divergent series. A form of definition prominent in the more recent
literature, especially in England, is that of Riesz {Compl. Rend., July, 1909)

:

s = lim X) Wf ( 1 - ~
) ; r = integer ^ 0.

n=iio u=u \ '
* /

There should be mentioned also the following definition of De La Vall6e Poussin (Bulletins de
la classe des Sciences de VAcademic Royale de Belgique, 1908, pp. 193-254)

:

, - lim ( V A--^ n(n - 1) •
•

.
(n - fc + D \'

- i™ T" +h (n + i)(n + 2)...-(ir+T) 'V

•

For a general study of possible forms of definition, see Silverman's Thesis "On the definition of the
sum of a divergent series" in the scientific publications of the University of Missouri for April
1913, pp. 1-96. '

5 Bidlctin des Sciences Math. (2), Vol. 14 (1890), p. 119. Chapman has extended the defini-
tion to include fractional values of r (Proc. London Math. Sac, Vol. 9 (1911), pp. 369-409).
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s = lim Sn^''^; r = fixed integer ^ (Holder),^

<? (0) _ „

*„"> = ^^^ (So''^ + ^1^°> + • • • + Sn^'^),

Sn

. *n

(2) =
71+ 1

(>•) = 1

(5o"^ + 51^1) + • • • + 5n«),

(^o^--^) + 51^'-" + • • • +*n^^^0

(HI)

n+ 1

s = lim e~''5(a) (Borel),^

where 5(a) is defined by the following series (assumed convergent for all values

of a)

(13) 5(a) = i:^ a".

(IV)

,=0 n :

e'" u (a)da (Borel) /

where u{a) is defined by the following series (assumed convergent for all values

of a)

n{a) =^ t'^.a'^.(14)

e~''Up{a)da; p = fixed integer ^ 1,(V)

where

Wp(a) = (wo + '^1 + • • • + Vp-i) + {lip + Up+i + • • • + «2p-i)a

+ {U2p + • • • + UZp-lW +

(VI) s= r e-''Up{a)da,'
Jo

where

(15) Up{a) = 2 2/„a'

„=o (np) !

' p = fixed integer ^ 1

.

37. Consistency of the Above Definitions.—It is at once to be assumed that

any tenable definition of sum for divergent series must be such that in the case

« Math. Annalen, Vol. 20 (1882), pp. 535-549.

^Cf. "Lemons," p. 97.

8Cf. "Lemons," p. 98.

s Due to LeRoy. Cf. Annates de la Faculle des Sciences de Toulouse (2), Vol. 2 (1902), p. 217.
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of a convergent series it gives s = S. This property of a definition is called its

consistency}^ We proceed to establish the consistency of all the above definitions

by a uniform method based upon the following general lemma in the theory of

limits.^^

Lemma.—Let so, Si, s^, • • • , Sn, • • • be a sequence of quantities (real or com-

plex) such that lim Sn = I and let ao^^^ a/^^ 02^^\ • • •, On^^^ • • • be a sequence
71=00

of positive quantities (weights) dependent upon a parameter p (independent

of n). Also let it be supposed that the expression

Sp =
.Z^ Ctji Sn

has a meaning for every value of p in a given sequence P of positive elements

which increase indefinitely to + oo. If, then, p be allowed to increase in-

definitely ranging over the values in P we shall have lim Sp = I provided that
p=+»

(A) lim '^^^— = 0,

«=o

where m is any fixed positive integer (independent of p and n).

Proof.—We have by hypothesis Sn = 1+ e„ ; lim €„ = and it suffices to
K= 00

show that lim Dp = 0, where
p=X)

^ P 00 ''•

By writing

n=0 n=0 n=mH-l

and then placing 5„ = / + fn in the last term here appearing we obtain

m 00

E(^n-/)a„^'^>+ Z €„fl„(^)

P 00 •

n=0

loCf. BuoMwiCH, "Infinite Series" (London, 190S), § 100.

" Cf. FouD, American Journ. of Malh., Vol. 32 (1910), p. 320. As here generalized, the

lemma was first- obtained and applied to the discussions of the present chapter by Meni)enh.\ll
in his thesis entitled " On the Characteristic Properties of Sum-Formulaj in the Theory of Divergent
Series," University of Michigan, 1911.
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"Whence, if we indicate by g^ a positive quantity such that gjn^\si\;i = 0,

1, 2, • • •, m, we may write

\Dp\^ {gm + \l\)

n=0
ZaJ^'

This relation holds good for any preassigned value of p belonging to P and

for any preassigned arbitrarily large positive integral value of m. The same

having been once established, let us now choose an arbitrarily small positive

quantity e and then take m so large that
]
e„| < «; n = m + 1, to + 2, • • •.

We may then write

£ \en\aj^'<e\f:an''^- JlaJ-A.
n=m+l L n=0 n=m J

Whence,

Dp < igm + \l\) '^ + € 1 -

from which the desired result follows as soon as we introduce the hypothesis (A).

38. We may now easily show the consistency of definition (I). For this

purpose let us take P in the lemma of § 37 as the sequence of positive integers

0, 1, 2, 3, • • •, and let a„^P^ be defined as follows:

,, r(r + 1) • • • (r + 2> — n — 1) .

a„(p> = -^—^—^—-^ f -' when n < p;
{p — n)\

a„^p) = 1 ivhen n = p; aj^^ = when n > p.

Then S^ = Sp'^'^Dp^''^ where Sp^'^ and Dp^'^ are given by (12). Condition

(A) of the lemma is satisfied since

ZaJ^' Zy
iiS Ir^ "

ll'S (r+l)(rV2) '{r + p)

n=0

= Hmr
p=a) L

P

+
rp

r+p {r -\- p){r -{- p — 1)

rp{p — 1) • • • (p —m + 1)+
(r + 2^)ir+ p — I) • • ir+ p

Thus we have the desired result

:

lim Sp = lim Sn = S,

^1 = 0.- m) J

p=00

provided the latter limit exists, i. e., when (11) is convergent.
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The consistency of (II) follows directly from that of (I) if we make use of

the following established result: "If the limit s defined by (II) exists for a

given value of r then the limit s defined by (I) exists for the same value of r, and

conversely. Moreover, the two limits s are the same." In view of this result

it appears that formulse (I) and (II) are coextensive both in applicability and

in the values of s which they associate with a given series (convergent or di-

vergent). As the proof of the indicated result is lengthy, it will be omitted here.^^

To show the consistency of (III), let P be taken as the continuous domain

p ^ and let aj^^ = p^'/n !. Then

Sp = -^-^ = e-Ps{p).

Condition (A) is satisfied since
in „m

(16) lime-^E—,= 0.
p=oo n=0 ''i •

Thus the lemma yields the desired result

:

(17) lim e~^s{p) = lim e'^sia) = lim Sn = S.
p—oo a=oo n=ao

In considering the consistency of (IV), we first note that when (11) is con-

vergent, lim Un = 0. Whence, if we apply the lemma of § 37 with s„ = w„ and
n=oo

fln^^^ = p"/n!, noting also relation (16), we obtain

(18) lim e'^uip) = lim e"'u{a) = lim Un = 0,
p=ai a=co n=«

where u(a) has the meaning given in (14).

Now, from equation (17) together with [e~''s{a)]a=o = uo, we may write

r dr d
S — Uo — I ^[e~°-s{a)]da.

But

^[e-"5(a)] = e-V(a)-5(a)],

where

-^s{a) = s'{a) = 5i + 52o: + *3 .yj + • • •

.

Whence, if we note that

d a^
^u{oc) = u'{a) = s'ia) — s(a) = Ui + i^a + U3^^-{- ,

"See Ford, I. c, pp. 315-326. Also Schnee, Malh. Annalcn, Vol. 67 (1909), pp. 110-125.

In view of this result we shall omit the detailed discussion of (II) throughout the present chapter,

all statements respecting it being identical with those obtained for (I).
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we have
/»«

(19) S - uo= e-''u'{a)da.
Jo

Whence also, upon integrating by parts,

S - Wo = U"" / u'(a)da +1 e"' j u'{a)da Ida

e-^iiiia) - uo] \ +1 e-^iuia) — Uo}da.

Introducing (18) together with

11 = I e~'^iioda
Jo

we reach the desired relation

:

(20) I e-''u(a)doi = S.
Jo

Definition (V) is at once seen to be consistent, for when (11) converges to S

so also does the series

{llO + Wi + • • • + Up-l) + («p + Up+l + • • • + «2p-l)

H- {U2p + W2H-1 + • • * + UZp-l) + • • •,

and by applying (IV) to this series we obtain the desired result:

f e °'iLk{ot)da = S.

Likewise, the consistency of (VI) may be shown by use of (20) for it is merely

the application of this equation to the series

«o + + + h + wi +0+0+.--+W2+0+-.-,

wherein p — 1 zeros are inserted between each term and the preceding term

in (11).

39. The Boundary Value Condition.—It is well known that two definitions

of sum, both " consistent "
(§ 37), do not necessarily give the same sum to a

given divergent series. In other words, consistency alone is not an adequate

principle upon which to base a scientific theory of summation because it does

not insure uniqueness of sum.^^ A theory free from this objection may be

" See remarks in Preface. It would appear that many of the formulae for sum suggested

within recent years have been obtained from considerations quite regardless of the question of

uniqueness.
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attained if (having demanded consistency) we confine the attention to those

series (11) for which the corresponding power series^^

(21) f(x)^f:2lr.X-
n=0

has a radius of convergence equal to 1 and then agree to retain those definitions

of sum for which

(B) s = lim fix).
a:=l-0

This procedure is in Hne with the historical genesis of the theory of summability

and allows the theory a well-defined usefulness in the study of analytic functions.^^

Indeed, if a general, self-consistent theory is to be formulated, it would seem that

it should contain (B), or an equivalent condition, though such a condition

evidently tends to hmit the immediate range of appHcability of the theory to a

particular class of series (11) (cf. Preface).

Having assumed, then, that the series (11) is such that the power series (21)

has a radius of convergence equal to 1, we shall undertake to determine in the

present § those definitions of sum which satisfy (B). Definitions having this

property we shall speak of as satisfying the boundary value condition.

We begin by showing that definition (I) satisfies (B), i. e.,

(22) lim flunx^ = lim Sn^^yDJ^\
x=l—On=0 n=oo

whenever the latter limit exists. This may be done as follows by the aid of the

lemma of § 37.

Let the Sn of the lemma be taken as SJ''^IDJ''\ Then place x = 1 — 1/p
so that as x ranges from a to 1 (0 < a < .t) the quantity p ranges from 1/(1 — a)

to + oo; also take aj^^ = DJ'\1 - l/^;)". The expression Sp of the lemma
then becomes

n=0 \ PJ ji=0

'• It is to be observed that tliis scries is formed by supplying the successive powers of x into

(11) beginning with x°, thus excluding, for example, the series (4) in connection with the study
of (1). This choice oi fix), though arbitrary, is evidently the most natural and the one most
likely to result in a theory of summability having useful supplemental relations to the boundary-
value problem.

15 Some sum-formulae, such as (IV), §36, not only satisfy (B) when applied to series (11)
for which (21) has a radius of convergence equal to 1, but they have the further property that
they preserve a meaning in certain regions in which |x| > 1 and in these regions furnish the
analytical continuation of (21) (cf. § 44).
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so that
00

lim Sp = lim X w„a:".

p=«) 2=1—0 n=0

Let us now confine ourselves, as may be done without loss of generality, to

values of p pertaining to the sequence P = 1, 2, 3, • • •. Condition (A) of the

lemma is now satisfied, since

which expression is evidently equal to zero since the denominator has a meaning

for all 2^ > but becomes infinite with p, while the numerator remains finite as

p = 00.

Applying the lemma, we may therefore write (22) as desired.

We turn next to definition (III) and shall show that (B) is again satisfied, i. e.,

00

(23) lim Xlw„a:" = lim e~''s{a),
Z=V—0 n=0 a=oo

whenever the latter expression has a meaning.

For this purpose we first note that for any series (11) (convergent or di-

vergent) for which the second member of (22) exists we have in the notation of

§36

(24) ^[^~"*(«)] = e-'^Wifii) - s(a)] = e-^u'ia); [e-«5(a)]„=o = ^o

and hence

^ [e-''s(a)]da = Wo + I e~"w'(a)c^a.

Conversely, it appears from the same relations (24) that for any series (11)

for which the last member of (25) exists, the second member of (23) exists also

and we have relation (25).

This premised, let us return to the series (21). Since this series is convergent

when
I

a:
1
< 1 it follows from the consistency of definition (III) that when

0< a;< 1

^UnX"" = Hm e~X(«)>
ji=0 a=oo

where s^(a) represents the function s{a) corresponding to the series (21) . Whence,

upon applying (25), we have also
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(26) X]«n.^" = Uo-\- I
e'^u' {ax)da; u'{ax) = ^u{ax).

Assuming for the moment that the integral here appearing converges uniformly

for all values of x in the interval a<a:<l;a>Owe now have, using (25),

00 /»oo

hm ^UnX'"' = 2<o + I e"'u'{a)da = lim e'^sia),
a;— 1—0 «=0 t/0 a=oo

thus reaching the desired relation (23).

That the integral in (26) converges uniformly for values of x in the interval

a < a: < 1 may be established as follows: Place ax = y and subsequently replace

X by 1/(1 + 6). The integral under consideration thus takes the form

(27) (1 + 0) r e-'ye-Hi'{y)dy,

so that it now suffices to show that (27) converges uniformly for all values of $

in the interval < 6 < b; b = {1 — a)fa.

Now, the integral
/»oo

(28) e-^u'{y)dy
Jo

converges, as appears from (25), when we make use of our hypothesis that the

second member of (23) exists. Moreover, the expression e~^^ is positive and

steadily decreasing as y increases and it becomes equal to 1 for all values of 6

when y = 0. We have therefore but to apply Abel's test^^ for the uniform

convergence of definite integrals to reach the desired result concerning (27).

We proceed to show that definition (IV) also satisfies condition (B), i. e.,

(29)

00 /^OO

lim X^ UnX"^ = I e~'^u{a)da,
a;=l— ra=0 Jq

whenever the latter expression has a meaning.

From the consistency of (IV) we have in the first place

00 /»oo

lim zlunX^ = hm I e~''u{ax)da,
J-—1—On=0 x=l—Ot/Q

so that it suffices for our purpose to prove that

r»ao pan

(30) lim
I

c~^ii{ax)da = 1 c~''u{a)da.

18 Cf. Bromwich, I. c, § 171 (2).
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Placing ax = y and subsequently replacing x by 1/(1 + ^)/^ the integral

in the first member of (30) takes the form

(1 + 0) 1 e-%-^u{y)dy
Jo

and we may now show by applying Abel's test, as in the discussion of (III), that

this integral converges uniformly for all values of 6 in the interval < 6 < b;

6 > 0, with which the proof of (29) becomes complete.

Definition (V) does not in general satisfy condition (B), as appears from an

example. Thus, let the series (21) be

and take p = 2. Then Up{a) = and hence s, as given by (V), is equal to

zero. But,

lim E (- 1)M- = Y^-r = h
a-=l-0 n=0 >-

I ••

That definition (VI) satisfies condition (B) may be readily inferred from

reasoning similar to that followed in connection with (IV). Thus, from the

consistency of the definition we have

00 /»oo

<31) limX!wna:"= lim e-''Up,xici)da,
1=1—On=0 x—l—oJo

where

Upon placing x = 2" the second member of (31) takes the form

/^oo

<32) lim 1 e-'Upiazjda,
»=l-0»/0

w^here Up is defined by (15). Now place az = y and subsequently replace z by

1/(1 + 6). Expression (32) then takes the form

roo
e-ye-'"Up(y)dy.

. -

Since the integral
/»«

e-yUp{y)dyf
has a meaning by hypothesis, we may show by means of Abel's test, as in con-

nection with (IV), that the integral in (33) is uniformly convergent for all values

of 6 in the interval < 6 < b, with which the proof is at once completed.

I'Cf. Bromwich, I. c, p. 121.
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40. Fundamental Operations.—Besides being consistent and satisfying the
boundary value condition (i?)/^ it is evidently desirable that the sum assigned
to a numerical divergent series (11) shall, at least so far as possible, be one for

which the usual operations applicable to convergent series are preserved. The
operations of this type which we shall consider are the following:

(C) If s represents the sum of the divergent series (11) by a given definition,

then the series

(34) z2un; k = positive integer
n=k

shall have a sum 5^^^ by the same definition such that

(35) 5(^> = 5 - (wo + ^1 + • • • + w,_i).

Conversely, if the series (34) has a sum s^^^ by a given definition then the series

(11) shall likewise have a sum s by the same definition and relation (35) shall

exist.

{D) If with a given definition of sum, the two divergent series:

(36) E Un, Z 'Vn

»i=0 n=0

have respectively the sums Si, S2, then the series

Zl (Un ± Vn)
w-0

shall possess by the same definition the sum Si ± 52.

(E) With the hypotheses stated in (D) the series

(37) tw.,
n=0

where

shall have the sum *i*2 (at least after certain additional conditions have been
placed upon w„ and v„ analogous to those imposed when two convergent series are
multiplied together).

We begin by showing that definition (I) satisfies condition (C). For this it

evidently suffices to suppose Jc = 1, since a repetition of the reasoning leads
from this to the general result (35).

18 For reasons stated at the beginning of § 39 we shall continue throughout the present § to
regard the given series (11) as belonging to the class for which the corresponding power series

(21) has a radius of convergence equal to 1. This hypothesis, however, plays no part in the
deductions about to be made.
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Placing

[Sn= Uq + Wi + • • • + W„,

[ (Tn = Wi + «2 + • • • + lin+l,

,
rjr + 1) , ,

r(r + 1) • • • (r + n - 1)

iSn^^'' = 5„ + r5„_i H 2] *"-2 + • • • +
~l

-^0'

n (.) _ (r+l)(r+2) ••• (r+n)
^" ~ n!

we are to show, then, that if the hmit

51 = Urn ,S/'-^/Dn^^^
n=QO

exists so also does the limit

52 = Km iSj^^Dn^'-^
n=ao

and that Si = uo + 52, with the corresponding converse statement.

Since Sn+i = uo + cr„ we have

r(r+l)
,

r(r+l)--(r+n-l)

where

1 I _L ^(^ + 1)
- -

r(r+l) ••• (r+7^-1) _ ^ (,)

Whence,

The desired result (both direct and converse) now follows upon noting that

As regards definition (III), it appears from an example that this does not

always satisfy (C). Thus, consider the special series (11) for which Uq, Ui, u^, • •
•

are so determined that

sin (e") = Uo + {uo + ni)a + {uq + Wi + W2) 2]+ *

"
'•

For this series we have

s = lim e"" sin (e") = 0; 5^^^ = lim e-" ;psin (e") — i/o^" = lim cos (e")— ^0,
a=« a=oo Loo; J „=«!

SO that although s exists, the same is not true of s'^^\
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In this connection we may, however, estabUsh the following noteworthy

result

:

" If the series
00

(39) Ew„; p = 0, 1, 2, 3, .••,^•

are each summable by (III) to the respective values s, s^'^^, s'-'^\ • •, s''''\ then

relation (35) is satisfied."

In fact, with Sn and (Xn defined as in (38) and with

2

s{a) = 5o + 5iq: + 52^ + • • •

,

<j(a) = (To + o-io! + (r2-^,+ • • •

,

we have, since Sn+i = wo + ctu,

a^ r q;2

s{a) = Wo + (uo + 0-0)0; + (wo + o-i) 75-, + • • • = Uoe" + (7o« + ci ^, +

a'

Or, since (r„ = Cn+i — w„+2,

s(a) = Moe" + ((7i — V2)a + (0-2 — W3) ^ +
Whence also

e-"5(Q!) = Uo + e~"(T(Q;) — e-^u'ia),

where u{a) is determined from (14). It therefore remains but to show that

lim e~'^u'{a) = 0, in order to prove the indicated statement for the case in which

k= 1.

Now, having assumed that both lim e~'^s(a) and lim e~V(a) exist, it follows

from the last equation that lim e~'^2i'(a) exists also. Moreover, we have (cf. (25))

(40)

/»00

lim e~"-s(a) = Wo + I e'''u'(a)da
a=oo t/o

SO that the only possible value of lim e~"-u'{a) is zero.^^

Repetition of the reasoning now leads to the more general result as stated

above.

Turning to definition (IV), it again appears that a series (11) which is sum-

mable by this definition may not satisfy (C), but that the following result may
be established:-'^

" If the series (39) are summable by (IV) to the respective values s, 5^^\

5(2)^ • • •, s^''^, then relation (35) is satisfied."

*^ It may be obsei'ved that the existence of the integral in (40) does not suffice to establish

the equation lim e~"u'(a) = (cf. Bromwich, I. c, p. 278).

2° Cf . Hardy, "Researches in the Theory of Divergent Series, etc.," Quarterly Journ. oj

Math., Vol. 35 (1904), p. 30.
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In order to see the truth of this statement for the case in which ^ = 1 we

first note that by an integration by parts we obtain

(41)

s = I e~''u{a)da = — e-^u{a)
t/O L Ja=0

+ 1 e-''u'ia)da = e'^uia) + s^^\
Jo L Ja=0

From this relation combined with the assumed existence of s and s^^'> it follows

that lim e~'^'u{a) = so that we have as desired 5^^^ = s — Uq. In order to

prove the more general case we have evidently but to repeat the same reasoning

k times.

Definition (V) does not always satisfy condition (C) since, as we have just

shown, it does not do so for the special case in which p = 1. Likewise, the

same is true of definition (VI) (which reduces to (IV) when p = 1), but we here

have an alternative result similar to that indicated above.

We turn then to condition (D). This is evidently satisfied by two series

summable by any one of the definitions of § 36 and, therefore, needs no further

comment.

As regards condition (E), it is obviously necessary to impose further condi-

tions than that of the mere summability of the two series (36) in order that (E)

be satisfied, at least in generab since even in the case of two convergent series

such supplementary conditions are required. We here have, however, the

following noteworthy result of Cesaro relative to series (36) summable by (I)

:

" The product series (37) of two series (36) whose degrees of indeterminacy

(§ 36) are respectively r and s is summable and has a degree of indeterminacy no

greater than r + 5 + 1."^^

Conditions under which condition (E) will be satisfied by definition (IV) will

be considered in § 44.

41. Summary of Results.—The principal results of §§ 35-40 may be sum-

marized into the following statement:

Let

(42) Zun

be any divergent series such that the corresponding power series

00

" We omit the proof of this well-known result. The same may be supplied from Bromwich,
I. c, § 125. For Cesaro's original proof, see Bulletin des Sciences Math., Vol. 14 (1890), pp. 118,

etc.
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has a radius of convergence equal to 1. Also, let (I), (II), (III), (IV), (V) and (VI)

represent the six definitions for sum indicated in § 36.

//, then, we represent by (A) the condition of consistency (§ 37), by (B) the

boundary value condition (§ 39) and by (C), {D) and (E) the conditions of § 40

carried over from the theory of convergent series, the relation of the various definitions

to these conditions appears in the following table wherein the * when placed in any

square indicates that the corresponding definition and condition are compatible:
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wherein u^^\a) denotes the pth. derivative of the (integral) function ii{a) (cf.

(14)).

Absolutely summable series, as thus defined, being but special series summable

by definition (IV), at once satisfy conditions (A), (B) and (D), as shown in

earlier §§. It therefore remains but to consider such series with reference to

conditions (C) and (E).

Now, if the series (11) is absolutely summable, it follows from definition that

both s and s^''^ exist. Whence, by the results obtained in § 40, we have relation

(35). In order to complete the proof that (C) is satisfied, we must now show

that if the series (34) is absolutely summable, so also is (11) and that with s and

5^*^ defined as before, relation (35) exists. For this let us first consider the case

in which k = 1.

Place23

(p{x) =
I

\u'{t)\dt^\ 1 u'{t)dt

We thus have
(p{x) ^ \u{x) — Wo

I

and hence
|w(.r)|^ (p{x) + |wo|,

so that the integral

I
e~''\u{x)\dx

Jo

must converge whenever the same is true of the integral

(44)
I

e-'<p{x)dx.
Jo

Now, by identity

I e-^(p(x)dx = - e-^<p{X) + I e-='ip'{x)dx
Jo Jo

and consequently, because (p{X) and <p'{x) are both positive,

nX fX r^xi

I
e~''(p{x)dx < I e~''(p'{x)dx < I e~''(p'(x)dx.

Jo Jo Jo

Thus the integrals (40) and (41) exist. Upon again applying the results obtained

in § 40, the desired conclusion now follows for the case in which k = 1.

A repetition of the reasoning evidently leads to the more general result.

We proceed, then, to show that absolutely summable series satisfy condition

(E).24

" Cf. Bromwich, I. c, § 106.

^* The proof which follows is essentially that given by Bromwich {I. c, § 106).
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In the first place, we may write (see definitions of si and 52 in (36), and note

(43))

S1S2 = lim ffe~^'^^u{x)v{y)dxdy,

in which the double integral appearing in the second member is understood to

be extended over the square OABC of side X situated as in the following figure:

y
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Moreover, since the series (36) are by hypothesis absolutely summable, each of

the iterated integrals in (46) approaches the same limit when X = co, so that

the expression (46) itself approaches the limit zero.

We may therefore in all cases write

(47) S1S2 = Yimj J e~''^'^^hi(x)v{y)dxdy,
A=oo

where the integration is performed over the right triangle OA'C, the length of

whose side is 2X.

This result being premised, let us now introduce into the second member of

(47) the new variables ^, rj defined as follows: x -\- y = ^,y = ^rj or x = ^(1 — 77),

y = ^^•

We then have^^

dydx = d^drj = ^d^drj,

dx
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interval < 77 < 1 since for all such 77 values the term (49) is less in absolute value

than

^ .t^r!(n-r)I

and this expression is the nth term of the (convergent) product series obtained

by multiplying together the (convergent) series

**
I -)/ I

^
1 11 I

»=o nl n=o nl

The integration with respect to 77 in (48) may therefore be performed term by

term upon the series whose nth. term is (49), thus giving

fum - v)mv)dv = i:^"E ..y'""!., fr-^a - vYdv.
Jo 71=0 r-Qi-V'' ')-Jo

But

r n-m ^r,
rl(n-r)l

Thus we have
/»! 00

1 w[^(l - v)H^v)dv = Z) Wn
t/0 n=0 (n+1)!'

where Wn has the meaning used in condition (E) (§ 40).

The integral (48) thus becomes

/•2A

Jo

where

and accordingly we have the equation

(50) 5i52= re-nva)d^.
Jo

The second member of this equation is seen to be the sum of the series

(51) O + W0+W1-] ,

so that our final result will now follow as soon as we show that under the existing

hypotheses the series

(52) Wo + ici + «'2 + • • •

is summable by definition (IV).
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We may in fact show that the series (52) is absolutely summable. Moreover,

since we have shown that absolutely summable series satisfy condition (C),

it will here suffice to show that the series (51) is absolutely summable

—

i. e., that

the integrals

re-f|irW(?)M^; A; =0,1,2,3, •••

converge. The proof of this presents no difficulties and will therefore be omitted.^^

43. Uniform Summahility

.

—Following analogy with uniformly convergent

series, Hardy-^ has proposed the following definition of uniform summability

for divergent series, basing the same on the form (IV) (§ 36) of definition of sum:

Definition I. If (instead of the series of constant terms (11)) we have the

series (convergent or divergent)

in which each term Unia) is a function of the (real) variable a, this series is

uniformly summable throughout the interval jS < a < 7 if for these values of a
the integral

00 /»00

^Un{a) =
I

e~''u{x, a)dx
Jo

converges uniformly, wherein

t(x, a) = J2un(.ci)
ni.I*

Upon the basis of this definition the following theorems analogous to those

encountered in the study of uniformly convergent series may be established:^^

Theorem I. " If all the terms Un{a) are continuous functions of a and

IXl

Sw„(q;)
n=0

is uniformly summable, and

Y.Un{(x)—.
n=o ni

uniformly convergent for any finite value of x, in an interval ((3, 7), the sum of the

first series is a continuous function of a throughout the interval."

Theorem II. "If
00

is uniformly summable in {ao — ^, cxq-\- ^) a7id

26 Cf. Bromwich, I. c, pp. 282-283.

" See Transactions Cambridge Philos. Soc, Vol. 19 (1904), p. 301.

28 Cf . Hardy, I. c.
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n=0 "• •

uniformly convergent for any finite value of x, the series

n=0

may be differentiated term hy term for a = ao"
Theorem III. "If

00

(53) Sunioc)
71=

is uniformly summable in (/3, 7) and

I] Wn(a)—

j

71=0 n i

uniformly convergent throughout the domain (0, X, /3, 7) however great he X, the

series may he integrated term hy term over (/3, 7)."

Extensions of Theorem III to cases in which (53) fails to be uniformly sum-

mable in the neighborhood of a finite number of isolated points within (/3, 7)

and to the case in which /3 = 00 have also been obtained. It would appear,

however, that with the indicated meaning for

00

Sw7i(a),
7!=0

Theorems I, II and III together with their generalizations relate in substance to

the properties of definite integrals of a certain prescribed type rather than to the

subject of infinite series, the latter appearing merely in the role of suggesting the

type in question. For this reason the notion of " uniform summability," at

least as formulated upon the basis of definition (IV) (§ 36), together with the

resulting theorems appear somewhat artificial. This seems less true, however,

in case definition (I) (or (II)) is adopted. Thus, confining ourselves for sim-

plicity to the important case in which r = 1, we then have the following

Definition IIP A series (convergent or divergent)

(54) JlnM)
n=0

in which each term Un{oc) is a function of the (real) variable a, is uniformly

summable throughout the interval /3 < a < 7 if for these values of a the ex-

pression

5o(o;) + Si{a) + • • • + Sn{a)

71+ 1
lohere Sn(oc) = Voia) + Ui{a) + • • • + Un((x)

converges uniformly to a limit U(a).

" Cf., for example, C. N. Mooue, Transaclioiis American Math. Soc, Vol. 10 (1909), p. 400.
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The theorems corresponding to I, II and III now become considerably more

direct. Thus, corresponding to Theorem I we evidently have the following:

" If all the terms ?/„(«) of the series (54) are continuous and the same series

is uniformly summable throughout the interval ((3, y), then its sum U{a) is con-

tinuous throughout (j3, 7)."

The corresponding forms for Theorems II and III can be at once supplied.

Supplementary Remarks and Theorems

44. From §§ 41-43 it may be concluded that of the six definitions of " sum "

in § 36 those deserving of especial emphasis are (I) (Cesaro) or its equivalent

(II) (Holder) and (IV) (Borel). We now add certain noteworthy results

respecting (I) and (IV), omitting proofs in cases where suitable references can

be given.

1. If a series (convergent or divergent) is summable by Cesaro's method for a

given value of r (cf. § 36), it is summable by the same method for all larger (inte-

gral) values of r.

In fact, with *S„^''^ and D^^''^ defined as in (12), we have the identities

^.C+l) = So('-> + ^i^'-) + So^^^ + • • • + Sn^^\

D,^r+1) = J)^ir) _^ J)^ir) _^ J)^^ir) + . . . + J)n^^\

and since by hypothesis lim Sn^^'^Dn'-''^ exists, it follows from a well-known

theorem due to Stolz''" that lim Sn^'^^^/Dn^'^^^ also exists and has the same

value, provided however that as n increases »Sn^''^ eventually does not oscillate

but is such that lim »S„^'"^ = ± co —a condition here fulfilled because by hypoth-
n=oo

esis lim <S„^''V-On^''^ exists, while from the definition of Z)„^''^ we have at once

limZ)„(^) = + °o.

2. A necessary condition that any series

n=0

be summable by Cesaro's method with a degree of indeterminacy r is that

(55) lim {un/n') = 0.
^i

A noteworthy corollary of this result is as follows:

3. Let

(56) 2 anX""
n=0

3" See Math. Annalen, Vol. 33 (1889), pp. 236-245.
^' For a proof, see Bromwich, I. c, § 127.
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be any power series having a radius of convergence equal to 1. Then the divergent

series
06

n=0

wherein Xo represents any special value such that |.ro| > 1 cannot be summed by

Cesaro's method. Thus, in particular Cesaro's formula cannot serve to prolong

analytically the power series (56) outside its circle of convergence.

In fact, placing w„ = a„a;o" we have

and hence

Whence

T Ufl
lim = .To

n=oo ^n—

1

—— = Xo-\- €„; hm €n = 0.

Un = WoGto + eOCa-o +62) • • • (a:o + €„).

Now, having chosen an arbitrarily small positive quantity 77, we have
|
Cn

|
< ^

for all n > a determinate value n^, and hence

I

.^0 + €n
I

>
I

Xo
I

—
I

r?
I

; n > nr,.

Thus, as n increases indefinitely the expression w„ becomes infinite to as high

an order as that of (|a-o| — It?!)"*. But for a sufficiently small choice of 77 we
have |a:o| — [r/l > 1, since by hypothesis |a-o| > 1. Thus (55) cannot be satis-

fied for any value of r.

In contrast to this result, we have the following important theorem arising

when, instead of the definition (I) of sum, we adopt the definition (IV) of Borel.

4. Let

fix) = 12 Ctn-T"

be any power series having a radius of convergence equal to 1. //, then, the series

71=0

is summable by definition (IV) (§ 36) so also is the series

00

S aniTo"
n=0

provided xq lie within the polygon formed by tangents to the given circle at the points

{assumed finite in number) upon the circumference at ichich f{x) has singularities.

Moreover, f{x) may be extended analytically to all such points xq by mean^ of the

sum formula in question, i. e.,
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/(•^o) =
I

e~'^u{aXQ)da
Jo

where

, ,
^aniax^Y

u{oiX^ = 2^ ^— .

n=0 ^ •

r/ie summahility at xq will be absolute (§ 42) anc^ i^ will be uniform (§ 43)

throughout any region situated ivholly within the indicated polygon (polygon of

summability).^^

5. Absolutely convergent series are absolutely summable, but series that are

merely convergent may not be absolutely summableP

6. // but one of tico series is absolutely summable while both are summahle by

definition (IV) {BoreVs integral) to the respective limits Si, S2, then the product

series (cf. (37)) is summable by the same definition to the value Si, S2, but not neces-

sarily absolutely summable. ^^

7. If two series are summahle by definition (IV) {BoreVs integral) to the values

S\, S2 respectively, then the product series (cf. (37)) whenever summable necessarily

has the sum sis^.^^

8. If the coeficients ui, U2, u^, ••• of the divergent series (11) are such that

the expressions

Eo = Wo, El = Uo-\- ui,

E2 = Uq + 2Ui + U2,

/r js Es = Wo + 3wi + 3w2 + W4,

w(n -1)
,

, , ,En = wq + nui H ^-j— u^-f- • • • + nw„_i + w„

all vanish after a certain point : n = m, then the series may be summed by definition

(IV) {BoreVs integral) and the sum will be

— ^ A- ~ -i- ^ -\- I

-^"t

*~
2 '2- 2^ 2"'''"^

—
i. e., the sum will be given by summing the series by Euler's well-known

method for converting a slowly convergent series into a more rapidly converging

one.''®

'2 Proof of the various statements here made is readily supplied from the remarks of Brom-

WICH, I. c, § 113.

33 Cf. Hardy, Quarterly Journ. of Math., Vol. 35 (1904), pp. 25, 28.

3< Cf. Hardy, I. c, pp. 43-44.

3* Cf. Hardy, I. c, pp. 44-45

" Cf. Bromwich, I.e., § 24.
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This result evidently becomes of especial significance for all series (11) of

the form

«o — «! + 052 — «3 + • • •
; flm positive

for which the successive differences between the quantities Qq, Oi, oz, • • • all

eventually vanish—e. g., the series

1-2+3-4+5- .-.,

wherein the quantities ^o, Ei, E^, etc., become

J^o = 1, ^1 = - 1, E2 = Es= • = En^O,

and hence * = 2 ~ i = i-

The proof of statement (8) may be readily supplied when we make use of

the Lemma of § 37. Thus, in the notation there employed, let us take in the
present instance

Sn
2 ^ 22 ^ 23 ^ ^ 2"+i

' "" ~ ~^ •

Then

7 T Eq El
,
Em

and condition (A) of the lemma is at once seen to be satisfied (cf. (16)).

Application of the lemma thus gives

I = lim e-^P Z '^H^ Sn = lim e-'"5(2a) = lim e-"5(a),
p=co n=0 ni <i=<30 ^^^

where s(a) is defined by (13). Moreover, this result may be written (cf. (25))

in the form
/»00

I = Uo-\- I e~''u'{a)da,

where u{a) is defined by (14). If the integral here appearing be integrated by
parts (cf, (41)) we thus obtain

/•oo

I = - [e-"M(a)]„=oo +
I

e-''u{a)da.

In order to finish the proof it remains but to show that the first term here
appearing in the second member is equal to zero.

Upon noting the meanings of Eq, Ei, E^, • • •, as given in (57), we obtain

euisx) =e"(wo+WiQ;+W2^+ •••) = J^o + i?i« + ii^am + ••• + ^m—

,

and hence

lim e-M(a;) = lim e-2« XE^^E^a^ h i^m —, 1 = 0.
a=oo a=» L ml J



CHAPTER V

THE SUMMABILITY AND CONVERGENCE OF FOURIER SERIES AND ALLIED
DEVELOPMENTS

45. In the present chapter it is proposed to derive the principal known
results concerning the summability of Fourier series and other allied develop-

ments for functions of one real variable (developments in terms of Bessel func-

tions, Legendre functions, etc.).^ We shall take the word " sum " in the Holder
sense- (§ 36) according to which a given series (convergent or divergent)

(1) flun
n=0

has its sum s defined by the equation

(2) s = lim 5„^''^; r = fixed integer ^ 0,

where
(0) = 5„ = Wo + Wl + • • • + U„

n + 1

Moreover, if the terms w„ are functions of the (real) variable x (as will now
always be the case) when considered throughout an interval (a, h), the series (1)

will be termed uniformly summable throughout (a, h) in accordance with the defi-

nition n of § 43—i. e., provided that the limit (2) is approached uniformly for

the same values of x.

In view of the fact that any discussion of the summability of Fourier series

and other allied developments is intimately connected with the corresponding

discussion of convergence, the latter being in fact but the case of summability

in which r = (cf. (2)), we shall as a matter of course elaborate both aspects

of the subject.^ No attempts will be made however to obtain theorems con-

taining the minimum restrictions for a given function j{x) in order that it be

^ See explanatory remarks in the Preface.
"^ The results obtained will therefore (§ 38) be convertible at any point into those for summa-

bility in the CesA.ro sense.

^ Since all convergent series are summable but not conversely it is evident that more restric-

tive conditions upon w„ are in general necessary to insure convergence than summability. This

fact will be well illustrated in the studies of the present chapter.

102



Theoeems on Fourier Series 103

developable in a summable (or convergent) series of any one type. The emphasis

will be placed rather upon the attainment of a general theory of such a nature

that the various more important special developments, including Fourier series,

and the familiar developments in terms of Bessel functions and Legendre

functions, may be studied as special applications of it, provided f{x) satisfy any
one of various slightly limiting conditions."^ This general theory is elaborated

in §§ 46-56 following which the applications just mentioned have been carried

through (§§ 57-70).

The basis of the entire chapter is Dini's great work entitled " Serie di Fourier

e altre rappresentazioni analitiche delle funzioni di una variabile reale " (Pisa,

1880) and due acknowledgment is here made to this source.

I

Fourier Series

46. If f{x) be a given function of the real variable x defined throughout the

interval (— tt, tt) the corresponding Fourier series is by definition

00

(3) |ao + zZ (cfn cos nx + 6„ sin nx),
M= l

where

an= \ fix) cos nxdx, K = -
\ fix) sin nxdx.

As regards the convergence and summability of this series, the following

theorems are well known:

Theorem I. If f(x) remains finite throughout the interval (— tt, tt) with the

'possible exception of a finite number of points and is such that the integral

(4) r \f{x)\dx
%)— TT

exists, then the Fourier series (3) will converge at any point x (— ir < x < t) in

the arbitrarily small neighborhood of ichich f{x) has limited total fluctuation, and
the sum will be

H/(^-o)+/(.T + o)].

Moreover, the convergence will be uniform to the limit f{x) throughout any in-

terval (a', b') inclosed within a second interval (oi, bi) such that

- IT < ai < a' < b' < bi < IT

<As regards convergence, including uniform convergence, general theorems of the nature
here indicated together with applications have been given by Hobson in a series of memoirs
appearing in the Transactions of the London Math. Society (Vol. 6 (1908), pp. 349-395; Vol. 7,

pp. 24-48; ibid., pp. 338-388). Corresponding general studies for summability do not appear
to have been thus far carried through, though numerous results have been obtained by special

methods. For further remarks, see notes appended to the theorems of §§67 and 68.
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provided thatf{x) is continuous throughout (a', h') inclusive of the end points x = a',

X = b' and has limited total fluctuation throughout (ai, 61).^

Theorem II. If f{x) remains finite throughout the interval (— tt, tt) with the

possible exception of a finite number of points and is such that the integral (4) exists,

then the Fourier series (3) will be summable (r = 1) at any point x {— ir < x < ir)

at which the limits f{x — 0), f{x + 0) exist, and the sum will be

i[/(^_0)+/(.r+0)].

Moreover, the summability ivill be uniform to the limit f(x) throughout any

interval (a', b') such that — t < a' < b' < ir provided that f(x) is continuous

throughout {a', b') inclusive of the end points.^

Theorem III. If f{x) when considered throughout the interval (— tt, tt) satis-

fies the conditions mentioned in Theorem I and is such that in arbitrarily small

neighborhoods at the right of the point x = — tt and at the left of the point x = tt

it has limited total fiuctuation, then the Fourier series (3) will converge when x = — w

or X = TT and in either case the sum will be

H/(^-o)+/(-x + o)].

Theorem IV. If f{x) when considered throughout the interval (— tt, tt) satis-

fies the conditions mentioned in Theorem I and is such that the limits /(tt — 0),

/(— TT + 0) exist, then the Fourier series (3) will be summable lohen x = ir or

X = — TT and in either case the sum will be

H/(7r-0)+/(-7r+0)].

It is our purpose here (having in mind the essential steps incident to the

formation of a general theory for the study of this and other allied develop-

ments) to show in the first place that the proof of Theorem I may be made to

depend upon the existence of the three following relations which themselves are

independent of the function f{x) and concern only the trigonometric expression

. 2n±l^
sm—^— t

(5) (p{n, t) = ~
,

27r sin
^

n being limited to positive integral values.

(I) The integral

(fill, t)dt

^Cf. HoBSON, "Theory of Functions," §§448, 451, 457, 459. Also, Chapman, Quarterly

Journ. of Math., Vol. 43 (1911), p. 33.

6 Cf. HoBSON, I. c, § 469.
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when considered for values of t in the interval — 27r +€<<< — e, e being an

arbitrarily small positive constant, converges uniformly to the limit — | when

n = CO
; while the same integral when considered for values of t in the interval

e = i = 27r — e converges uniformly to the limit ^ when n = co J

(II) For a sufficiently small choice of the positive quantity e we have

'Jo

(p(n, t)dt < A; - e^t^e,

where ^ is a constant independent of both n and t.
^

(III) For a sufficiently small choice of the positive quantity e we have

I

(p(n, t)\< B; - 2Tr + € ^ t ^ - €, e ^ t ^ 2Tr - e,

where 5 is a constant independent of both n and t.

In order to prove that Theorem I depends, as stated above, upon the existence

of these three relations, let us suppose at first that x has some special value x = a

such that — X < a' ^ a; ^ 6' < TT, the quantities a', h' being regarded as fixed.

With this value of a the {n + l)st term of the series (3) takes the form

~
I

/('^)(cos Tix cos na + sin nx sin na)dx = -
I f{x) cos n{x — a)dx,

SO that the sum of the first (n + 1) terms becomes

Sn{a) = - I fix) H + Zl cos n{x — a) \ dx.

Upon making use of the well-known relation

n

+ zl cos nx =

. 2n + 1
sm—-— X

1

71=1 n •
"^

2 sinr

we thus have

(6) Sn((x) = I f{x)(p{n, X - oi)dx,
J—-n

where (p{n, x — a) is to be determined by (5).

Whence also, having chosen an arbitrarily small positive quantity e, we may

write

(7)

f{x)(p{n, X — a)dx + I j{x)<p{n, x — a)dx

+ I f{x)(p{7i, X - a)dx + I fix) (fin, x - a)dx.
Ja—e *Ja

'' For a proof of this statement, see Appendix, § 1

.

^ For a proof, see Appendix, § 2.
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We may now show that the conditions placed upon f{x) for the whole (closed)

interval (— tt, tt) (cf. Theorem I) when taken in conjunction with relations (I)

and (III) suffice to make the limit approached by each of the first two integrals

of (7) equal to zero when n = oo , In fact, we shall show that this limit is

approached uniformly by each of these two integrals when they are considered

for values of a for which a' ^ a ^ b'.

Considering, then, the first integral in the second member of (7), let us repre-

sent by Xi, xi, Xz, ' • •, Xq (Xs > a^s-i) the points (q in number) at which f{x)

becomes infinite in the (closed) interval (— tt, tt), assuming at first for simplicity

that Xi ^ — TT, Xq ^ TT. Having chosen an arbitrarily small positive quantity

CO, let us also suppose at first that the value x = a — e lies within one of the

following intervals:

(8) (— IT, Xi— 0)), (.Ti + CO, a'2 — co), •••, (a:g+co, — x),

i. e., let us assume that a: = a — e is not one of the points at which f{x) becomes

infinite. We may then express the integral in question in the form

(9) 1 f(x)cp(n, X - a)dx ^ S + R,

where

+ + • • • + + ]f{x)^{n, X - a)dx, (g ^ q)

and

+ + • • • + )
f{x)<p{n, X - a)dx.

Now, introducing relation (III), we have

' + + •••+ ]\m\dx

and since the integral (4) is assumed to exist it thus follows that for a sufficiently

small choice of co we shall have \R\< Bgp < Bqp where /o is a preassigned

arbitrarily small positive constant.

The value of p having been assigned and co then determined in the manner

just indicated, we turn to the expression S. In considering this it is first desirable

to make the following observation.

Consider the set of intervals (8) . Let us divide the first of these into y equal

sub-intervals of length 6i, the second into the same number j) of equal sub-

intervals 52, • • •, the {q + l)st into the same number y of equal sub-intervals

of length 5^+1. Let Di, g be the fluctuation oi f{x) in the sih one of the intervals

5i, let Z>2, s be the fluctuation of f{x) in the 5th one of the intervals 62, • • •, let

Dq+i,s be the fluctuation of /(.r) in the 5th one of the intervals dq+i. Finally,

let us form the sums
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(10) hilDr,,, hJlD,,,, ..., 5,+ii:Z)
«—

1

s=l .-1«=1
3+1, 8-

Since /(.t) is integrable over each of the intervals (8), it follows that we can make
our choice of the integer p so large that each of the sums (10) will be less in

absolute value than the preassigned quantity p already mentioned. At the
same time, y may be chosen so large that each of the integrals

(11) ( \f{x)\dx; ,= 1,2,3, ...,9+1,

where the integration is performed over any one of the intervals 5„ will like\^^se

be less than p. In what follows the quantity y will be understood to be any
special one determined according to the two conditions just indicated.

Returning to the expression S, let us now consider the first of the integrals
of which it is constituted. Calhng x = ^,_i, x = ^, the values of x corresponding
to the end points of the 5th one of the intervals 5i, we have

'J-n s=iJ^,_i [ (p = (p{n, x — a).

Now, introducing the constant B defined in (III), we may write

f'f'<pdx= f'f-(<p+ B)dx - B C'fdx

and the function (p + B will be positive for all values of x such that ^^-i < x < ^^

(n having any value which it may take). Hence, upon applying the first law of

the mean for integrals, we have

r '/
• <pdx = f, f\dx + Bf, f'dx- Bf/ C'dx,

•^^-1 '^f.-i ^f.-i »/f.-i

where fs and // are certain values lying between the upper and lower limits of

f(x) when ^s-i < x < ^s-

Since ^s — ^s-i = 5i we thus have

I f ' (pdx = fs I
(pdx + dsBdiDi, s,

where ds is a quantity lying between — 1 and + 1 and where Z)i, , has the meaning
already indicated.

Hence, recaUing what has been said of the sums (10), we may write

(12) r f <pdx=j^fA' ipdx+eBp; -1<^<1.
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Now,

I (pdx = I (p(jn, t)dt = I <;i?(n, <)<i< — I (p{n, t)dt

and corresponding to a second arbitrarily small positive quantity (x we may,

by virtue of relation (I), find a quantity n„ independent of a. such that

f'Jo

fJo

^{n, t)dt = - i + eicr

(p{n, t)dt = —
2 + 620*

Whence,

^c?a; < 2(7

n > n„,

- 1< 01 < 1,

a' < a < h'.

n > n„,

a' <a< h',

1< 62 < 1,

and hence also (cf. (12)) we have for the value of a under consideration

»fl— <o

(13) L ^ (pdx < 2Mpa -\- Bp] n > n^,

where M represents the upper limit of |/(.r)
|

in the intervals (8).

Similarly, all the g -\- \ constituent integrals of S, except the last, may be thus

treated, thereby leading to the equation

(14) S = P +
/^a—e

I / • (pdx,

where for all values of n greater than some value independent of a we have

I P I < 2gMp(x + gBp ^ 2qMpa- + qBp.

Let us consider finally the integral appearing in (14). For this we first note

that the interval of integration consists of a portion (or at most the whole) of

the interval {xg + co, Xg+i — co) belonging to the set (8). Let us suppose that

rjr < oi — € ^ r)r+i where rjr and r]r+i are the values of x corresponding to the

extremities of the rth of the p divisions of length 8g+i into which we have already

divided the interval {xg + co, Xg+i — co). We may then write

I / • (pdx =1 / • (pdx +1 / • (pdx.

The last integral here appearing is less in absolute value (cf. relations (III)

and (II)) than

(15) B r '

\f(x)\dx < B P" \f(x)\dx < Bp

where p has the meaning already given.
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Again, let there he I {I "^ p) of the divisions 8g in the interval {Xg + co, r]r).

Then, treating the first integral in the second member of (15) as we did the first

integral in S, we obtain (cf. (13))

I / • (pdx < 2Mh + Bp^ 2Mp(7 + Bp; n > n„,

where n^^ is independent of a.

In summary, then, we have the following result: Let xi, xi, x^, - • , Xs, • - , Xq',

(Xs > Xs-i); {xi 4= — TT, a:, =# x) represent the q points within the interval

(— TT, tt) at which /(x) becomes infinite, and let a be any value such that a — e

(cf. (7)) lies within one of the intervals

(— TT, Xi — Oi), (.Ti + CO, .T2 — Co), ••, (Xg + CO, Tt)
;

03 arbitrarily small and positive

and also such that — x < a' ^ a ^ b' < tt. Then, corresponding to an arbi-

trarily small positive quantity p and a second such quantity a, we may determine

a positive value n^ independent of a and such that

£ f(x)cp(n, X - a)dx < 2pM(q + 1)(t + B{q + l)p; n > n.

Since B, q, M and j) as well as n^ are each independent of a, it follows that for

all the indicated values of a the first integral in the second member of (7) converges

uniformly to zero when n = oo

.

It remains to show that the same is true when a — e pertains to one of the

intervals of the following set

:

{xi — CO, Xi-\- co), {X2 — 0}, X2 + co), ' ", (x g — CO, X q -\- oi)

;

03 arb. small and positive.

The desired result follows by reasoning directly analogous to the preceding

after rewriting (9) in which S and R are, however, defined as follows:

+ + • • • + f{x)<p{n, X - a)dx, (g ^ q),

+ + •••+ + )f{x)<p{n,x-a)dx.

Again, the same conclusion may be likewise reached in case either or both

of the points x = — tt, x = ir are points at which /(.t) becomes infinite. The

forms in which S and R should then be taken readily suggest themselves and are

therefore suppressed.
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In like manner it appears that the second integral in the second member of

(7) converges uniformly to zero when w = co for all values of a such that

— TV < a' ^ a ^h' < -K.

These results having been established, we turn to a consideration of the last

two integrals in the second member of (7). We shall suppose at first that a

has any sjjecial value such that — tt < a' = a; = 6' < tt.

Since by hypothesis f{x) is of limited total fluctuation in the neighborhood of

the point x = a, the expressions f(a. — 0), f{a + 0) certainly have a meaning.^

We may therefore write the third integral in the second member of (7) in the form

(16) /(a
-0)J_

<pin, t)dt + j_[f{a+t)- f{a - 0)]cp{n, t)dt.

Wlien n = 00 the first term here appearing approaches the limit \f{a — 0)

as a result of relation (I). As to the second term, it follows from our hypotheses

upon f{x) in the neighborhood of the point x = a that the function /(a + t)

— f(a — 0) is of limited total fluctuation in the interval — e < t < 0, a,t least

if e be chosen sufficiently small. Whence, in this interval the same function

will be either monotone or will consist of the difference of two monotone func-

tions.^*' In the former case we may apply the second law of the mean for integrals

and write

(17) J"
[/(a +t)- f{a - 0)Mn, t)dt = [f{a - e) + f{a - 0)] J

''

^{n, t)dt;

< ei < e.

At the same time our choice of e may be made so small that the expression

\f{a — e) — f{a — 0) |

will be less than any preassigned quantity a. With e

thus chosen, we have now but to make use of relation (II) to see that the

second term of (16) may be made less in absolute value than Aa, whatever the

value of n. In case f{a -\- t) — f{a — 0) consists of the difference of two mono-

tone functions, the proof may evidently be carried out in a similar manner,

showing that in this case the absolute value in question will be less than 2A(t.

Therefore, the limit of the sum of the first and third terms in the second

member of (7) as w = co is f/(a; — 0). Similarly, the limit approached by the

sum of the second and last terms is ^f{a + 0).

The first part of Theorem I is thus fully established. It remains to consider

only that part which concerns uniform convergence, and since we have already

shown that for all values of a such that — Tr< a' ^a^b'<T the first and

second terms in the second member of (7) converge uniformly to zero, it will

9 Cf. HoBsoN, I. c, § 194.

'0 Cf. HoBSON, I. c, § 195.
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now suffice to show that under the hypotheses of the last part of the Theorem
the last two terms of (7) when considered for the same values of a each converge

uniformly to the limit ^/(a).

Now, if f{x) be continuous (as the present hypotheses demand) throughout

the interval (a', h') {x = a' , x = h' included) then/(.r) will be uniformly continu-

ous throughout this interval.^^ Hence, corresponding to an arbitrary choice of
11 Cf. HoBSON, I. c, § 175.

the positive quantity a, it is possible to determine a positive e independent of a
and such that

(18) |/(a - e) - /(«)
I

< (t; a' <a<h'.

Introducing this choice of e into (16), we may again write (17) for all the

indicated values of a (a' ^ a ^ h') since, from the hypotheses of the second

part of the Theorem, it follows as before that the function f{a -\- t) — f{a) is

either monotone or consists of the difference of two monotone functions of t

throughout the interval — e < t < whatever the value of a (a' ^ a ^ h')—
at least if e be taken so small that a' — e > ai, where ai has the meaning given

in the Theorem.

Thus, we reach the desired result respecting the third term in the second

member of (7) and similarly, we reach the indicated result for its last term.

47. We turn to the proof of Theorem II. It is our purpose here to show that

relations (I) and (III) of § 46 together with the following suffice for the proof:

(II)' Having placed

(19) Hn,t) =-^. 12^{n,t),
n -\- 1 n=0

where (p(n, t) is the trigonometric expression (5), we may write for a given value

of the positive quantity e and all subsequently chosen sufficiently large values

of n

£ \^{n, t)\dt< C;

where C is a constant (independent of both n and e).

In proving Theorem II we shall therefore substitute relation (II)' for relation

(II) of § 46, but we shall employ relations (I) and (III) as before.

Assuming first that a has any special value such that — it < a' ^ a ^ b' < tt,

we have from (7)

^, ^
[^o(a) + si{a) + .

. . 4- Sn{a)] = I f(.v)^{n, x — a)dx

(20)

+ I f{x)^{n, x—a)dx-\- I f{x)^(n, x — a)dx + 1 f{x)^(n, x — a)dx,

where $ is given by (19).
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Now, the fact that <p satisfies (I) and (III) enables us to say at once that <l»

also satisfies the same relations. In fact, if ip satisfies (I) the principle of con-

sistency (§ 37) as applied to the Holder method of summation shows that $
also satisfies it, while (III) becomes satisfied by $ since we may write

\^{n,t)\^-^\\<p{3hf)\^\ip{ii- 1, 01 + ••• +k(0, 0|] < V= ^•

The second member of (20) is the same as that of (7) except for the substi-

tution of <J> for ip, and since <E> satisfies relations (I) and (III) it follows precisely

as in the discussion in § 46 that the first two integrals on the right in (20), when

considered for values of a such that — tt < a' ^ a: = 6' < tt, converge uni-

formly to zero as n = co, provided merely that the integral (4) exists. The

third term of (20) may be written in the form

/(a - 0) j ^{n, t)dt + J [/(a + - /(« - 0)Mn, t)dt,

provided that f(a — 0) exists. When n = <x> the first term here appearing

approaches the limit |/(q; — 0) since, as already pointed out, $(??, t) satisfies (I).

As to the second term, we may choose e so small that throughout the interval

— 6 < i < we shall have \fia -{- t) — f{a — 0)\< <x where a is an arbitrarily

small preassigned positive quantity. With e thus chosen and n then taken

suflBciently large the term in question becomes less in absolute value than

(21) a
j

\^{n,t)\dt< Co,

where C is the constant defined in connection with relation (II)'. Thus, the

sum of the first and third terms of (20) approaches the limit \j{a — 0) when w= co

.

Likewise, the sum of the second and last terms of (20) is seen to approach the

limit \j{a + 0).

The first part of Theorem II thus becomes established, and in order to prove

the second part it suflSces to note (cf. the discussion of (16)) that if /(.r) is con-

tinuous throughout the interval {o! , b') inclusive of the end points, then the

quantity e in (20) may be chosen independently of a (a' < a < b').

48. Having shown that Theorem I results from relations (I), (II) and (III)

and that Theorem II results from (I), (II)' and (III), we shall now show that

Theorem III results from (I), (II) and (III) together with the following:

(IV) <p{n, t±2Tr) = <p{n, t).
^^

Let us take first the case in which x = tt. The expression for Sniir) may be

•2 The proof of (IV) is immediate from (5).
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obtained by placing a = -w in (6). This expression, after placing x — it = t,

becomes

(22) Sn(T) = j fiiT + t)<p{n, t)dt =
( / ^

+ J )/(^ + t)^in, t)dt.

Of the two integrals here appearing in the last member, the first, after making

the substitution t' = 2^ -\- t and dropping accents, takes the following form as a

result of (IV)

r /(- TT

+

i)<pin, t)dt.

Jo
Whence, we may write

*n(7r) = r V(vr + t)<p{n, t)dt + Cf{- tt + t)<p{7i, t)dt

(23) 6
(t > 0)•

+ r /(tt + 0«p(^i, 0^^ + r /(- vr + Ov(^, 0^^

We may now show that as n = oo the limit approached by each of the first

two integrals here appearing is 0. In order to do this it will suffice, since the

integral (4) exists, to show that the property just indicated is true of each of the

integrals

J /(tt + t)cp{n, t)dt, J /(- TT + t)<p{n, t)dt,

where it is understood that /(tt + t) remains finite throughout the (closed)

interval (c, d); — ir^c<d^ — e, while f{—ir-\-t) remains finite through-

out the (closed) interval (e, f); e ^ e < / ^ tt.

Let us divide the interval (c, d) into p equal sub-intervals each of length 5

by means of the points t = c, t = t\, t = U, - - , t = tp-i, t = d. Then, with

the meaning for B appearing in (III), we may write

f'fia + tMn, t)dt = i V(« + t)[<p{n, t) + B]dt - B f /(« + t)dt

and {(p{n, t) + B] will be positive when ts-\ < t < ts {n having any fixed value).

Hence, applying the first law of the mean for integrals, we obtain

r V(a + t)^(:n, t)dt = fs f'<pin, t)dt + Bfs f'dt - Bf/ f'dt,

where /« and fs are certain quantities lying between the upper and lower limits

of f{a + t) when ts-\ < t < tg.

Since ta — ts-i = 5, we thus have

f'fia + t)(p{7i, t)dt = /, r <p{n, t)dt + d.BbD,; - 1 < 0, < 1,

where Z), is the fluctuation of /(a + t) in (/«_!, tg).

9
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Hence also

f{a + t)(p{n, t)dt = T.fs <p{n, t)dt + 055 Z^al - 1 < < 1.

Now, by taking p sufficiently large the last term of (24) may be made arbi-

trarily small in absolute value, as follows from the existence of (4). The value

of p having once been chosen, let us allow n to increase indefinitely. The last

term of (24) continues arbitrarily small in absolute value, while its first term

approaches the limit zero, as appears directly upon writing

*}t^x Jo Jo

and applying (I).

Similarly, the second term in the second member of (23) is seen to have the

property already indicated.

As to the third integral in the second member of (23), let us write

(25)
f /(tt + t)<p(n, t)dt = f(ir - 0) J <pin, t)dt

^-
j_ [fia+t)-fi7r-0)]<p{7i,t)dt,

noting that /(tt — 0) necessarily exists since, according to the hypotheses in

Theorem III, the function f{x) is of limited total fluctuation in the neighborhood

at the left of the point x = tt. Upon comparing (25) with (16) and noting the

statements in § 46 connected with the latter, we see at once that as n = <x> the

expression (25) approaches the limit |/(7r — 0). Likewise, as n = oo the last

term of (23) is seen to approach the limit |/(— tt + 0).

In case x = — ir (instead of x = tt) we have the following equations corre-

sponding to (22) and (23)

:

Sn(- Tr) = j V(- ^ + t)<P(n, t)dt =(J + f'^)/(-vr+ tMn, t)dt

/(- TT + t)ip{n, t)dt +
J

/(tt + t)<p{n, t)dt

or

Sn{- t) = f /(tt + t)^{n, t)dt + r /(- TT + tMn, t)dt

(26)
-"- '

^.

+ f(7r-\-t)<p{n,t)dt+ f{-7r+t)cp{7i,t)dt,

and, upon considering the four integrals here appearing on the right as we con-

sidered those in (23), we find

lim 5„(- tt) = + + i/(7r + 0) + i/(-
tt + 0).
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Thus, the proof of Theorem III becomes complete.

49. Theorem IV likewise follows from (I), (II)', (III) and (IV) upon noting

that the expressions

^^-^ [So(± X) + 5i(± 7r) + \- Sn{± X)]

may be obtained by replacing (p(n, t) by ^(n, t) in (23) and (26) and that, as a

result of (IV), we have ^{n, t dz 27r) = ^{n, t).

II

The Representation of Arbitrary Functions by Means of Definite

Integrals. The Formation of a General Theory for the Study

OF the Summability and Convergence of Fourier Series and

Other Allied Developments

50. The manner in which the summability and convergence of Fourier series

has been shown in §§ 47-49 to depend upon the properties of the integrals

f<p{n,t)dt, f^{n,t)dt,

where (p(n, t) and $(n, t) are defined by (5) and (19) readily suggests the general

problem of determining a set of sufficient conditions for any function ip{n, t) of

the two real variables n, t, or more generally, for any function (p{n, a, t) of the

three real variables n, a, t in order that the integral (cf. (6))

(27)
fb—a

/^h

f{a + i)<p{n, a, t)dt or I f(x)<p(n, a, x — a)dx
.. -a 'J

a

shall converge when n = oo to the values \ [/(a — 0) + /(a + ())] or \ [f(b — 0)

+ /(a + 0)] according asa<Q;<6orQ; = either a or b. Naturally, the range

of possible existence for such functions cp will depend upon the conditions im-

posed upon the given function f{x) when considered throughout the interval

(a, 6), and in determining the form of such conditions we shall hereafter be

guided by the limitations upon f(x) occurring in the Theorems of § 46. The
general theorems about to be obtained will serve as a foundation for the dis-

cussion in §§ 64-70 relative to the summability and convergence of the well-

known developments in terms of Bessel functions, Legendre functions, etc,

51. Theorem I. Let cpin, a, t) be a function of the real variables n, a, t ichich,

when considered for values of a lying tvithin any sub-interval {a', b') of {a, b) (a < a'

< 6' < &) satisfies the following three relations in ichich n is restricted to 'positive

integral values and in which e represents a positive quantity lohich may be taken

arbitrarily small:

(I) lim I (p(w, a, t)dt =
]

— \ when a — a = t^ — €,

\ when e ^ t ^ b — a.
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Moreover, let these limits be approached uniformly for all of the same values of

a and t}^

(II) ^{n,a,t)dt\< A;

where A represents a constant independent of n, a and t.

(Ill)
I

(p{ii, a,t)\<B; a — a^t ^ — e or e ^ t ^ h — a,

where B represents a constant independent of n, a and t.

Aho, letf{x) be any function satisfying the folloioing two conditions:

{A) When considered throughout the interval {a, b),f(x) remains finite with the

possible exception of a finite number of points and is such that the integral

I 1/(0.-)
I

dx
'Ja

exists.

(B) When considered in an arbitrarily small neighborhood about the (special)

point X = a (a' < a < b') f{x) has limited total fluctuation.

Then we shall have for the {special) value of a mentioned in (B)

(28) lim r f{x)<p{7i, a, x - a)dx = \ [/(« - 0) + /(a + 0)].
m— 00 ^

a

Moreover, if {instead of condiiion {B)) f{x) is continuous throughout the interval

{a', b'), the points x = a' , x = b' included, and has limited total fluctuation through-

out an interval (oi, 6i) such that a < oi < a' < b' < bi < b, then tve shall have

uniformly for all values of a in {a', b')

(29) lim 1 f{x)(p{n, a, x — a)dx = f{a).
7i= oa t'a

" Thus, to an arbitrarily small positive quantity a it shall be possible to determine a value n,

independent of both a and I such that

pt
I

I <p{n, a, t)dl + I < 0-; n > no-

provided a and I are assigned values consistently with the relations

a' < a. <h'; a — w^f^ — €.

Likewise,
1

/*'
I

I <p(n, a, t)dt — 5 < 0-; n > tie

I
«/

I

provided a and I are assigned values consistently with the relations

a' < a < b'; e'^t^b — a.

It may be added that in case one confines the attention to the convergence of the integral

(27) for special values of a (thus not considering questions of uniform convergence) it suffices

that relation (I) shall be satisfied for each special value oi a {a' < a < b'). Similarly, the con-

stants A and B of (II) and (III) may then depend upon a.
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Proof.—The proof of this theorem is readily supplied upon referring to the
methods employed in § 46 for the study of the integral (6). We shall therefore
merely indicate the essential steps.

Representing the integral (27) by *„(«), we first write (cf. (7))

m<p(7i, a, X - a)dx + 1 f(x)<p(n, a, x - a)dx

+ /
f(x)<p(n, a, x - a)dx + f(xMn, a, x - a)dx.

Of the four integrals here appearing, the first two approach the limit zero
asn= CO and the convergence is uniform for all values of a such that a' < a < b'
as results from (I), (III) and (A). Moreover, the third and fourth integrals
(considered for any special value of a such that a' < a < h') approach respec-
tively the hmits i/(« - 0), i/(a + 0), as results from (I), (II) and {B) (cf. (17),
(18)).

Likewise, upon comparison with the corresponding studies in § 46, it appears
that equation (29) will hold true uniformly under the conditions stated in the
theorem.

52. Theorem II. Let ip{n, a, t) he a function of the real variables n, a, t

which, when considered for values of a such that a < a' < a < b' < b, satisfies
relations (I) and (III) o/ § 51 and is such that if we place

(30) ^{n, a, t) = ^-^-p^ {o{n, a, t) + ^{n - 1, a-, + • • • + ^(0, a, t)]

the following relation is satisfied: corresponding to a given e > ice shall have for all
subsequenthj chosen sufficiently large values of n

OT' j \Hn,a,t)\dt< C

where C represents a constant independent of n, a and e.

Also, let fix) be any function which satisfies condition (A) of § 51 together with
the following :

{BY When considered in the neighborhood of the {special) point x = a (a' < a
< b'), the limits f{a - 0), f{a + 0) exist.

Then ive shall have for the (special) value of a mentioned in (B)'

(31) hm I f(x)^{n, a,x- a)dx = \ [f{a - 0) + f{a + 0)1.

^

Moreover, if {instead of condition {B)') f{x) is continuous throughout the interval
(a', b'), the points x = a', x = b' included, we shall have uniformly for all of the
same values of a

lim I f{x)^{n, a, x - a)dx = /(a).
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The proof of this theorem, Hke that just indicated for Theorem I, is at once

suppHed upon following the steps indicated in § 46 with reference to the special

integral (6) there occurring. We therefore omit it.

53. As a generalization of the Theorem III of § 46 we have the following

Theorem III. Let (p(n, a, t) he a function of the real variables n, a, t loliich,

lohen considered for the special values a = a, a = b (b > a) satisfies the following

four relations in ivhich n is restricted to positive integral values and in which e repre-

sents a positive quantity ichich may he taken arbitrarily small:

(Da.i

lim I (p{7i, a, t)dt = — | when a— b-\-€^t^ — e,

n=oo t/0

lim J (p(7i, h, t)dt = ^ when e '^ t ^ 6]— a — e.

(II)a,b Relation (II) of § 55 is satisfied ivhen a = a and t lies in the interval

^ i ^ e; also when a = h and t lies in the interval — e ^ t ^ 0.

I I

(p{n, a, t)\ < B ivhen a— b-\-e'^t^ — e,

^

1 !
<p{n, b,t)\< B when e ^ t ^ h - a - e,

where B is a constant independent of both n and t.

(IV) <p{?i, a, t -\- b — a) = (pill, b,t-\r b — a) = <p{n, a, t) = (p{n, b, t).

Also, let f{x) he any function which satisfies condition (A) of ^ 51 and is such

that in arbitrarily small neighborhoods to the right of the point x = a and to the left

of the point x = b it has limited total fiuctuation.

Then we shall have

lim I f(x)(p{n, a, x — a)dx = lim I f{x)(p{n, b, x — b)dx

= |[/(6-0)+/(a + 0)].

Proof.—Here again the proof may be easily supplied upon reference to the

analysis occurring in § 48. Thus, for the case in which a = 6 we may write

Snih) = f f{h + tMn, b, t)dt = ( f Vr'+r)/(6 + t)<p{n, b, t)dt,

which, upon making the transformation t' = b — a -{- tin the first integral of the

last member and making use of (IV) becomes

»0

?n(&) = f f{h + tMn, b, t)dt + f /(6 + t)<p{n, b, t)dt

-b+(

+ 1
/(a + t)(p{n, a, t)dt.

Jo
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Of the three integrals here appearing, the first approaches the Hmit zero when
n = 00 , as results from (1)^, b, (ni)a, i and {A) while the second and third approach

respectively the Hmits |/(6 — 0) and |/(a + 0), as results from (!)„,&, (II) a, b

and the assumption regarding the behavior of f{x) in neighborhoods arbitrarily

near to the points x = a and x = b.

Similarly, in case a = a we may write

Sn{a) = /(a + t)ip{n, a, t)dt =
( + + \j(^a-\-t)cp{n, a, t)dt

»>'o \ Jo Je Jt)~a-e /

Xb—a—e /»0

f{a + i)(p(n, a, t)dt + j f{h +tMn,h, t)dt

+ 1 /(a + t)(p{7i, a, t)dt,
Jo

from which we deduce the indicated result as before.

54. Again, we have (cf. the remarks in § 49 on Theorem IV) the following

Theorem IV. Let (p(n, a, t) he a function of the real variables n, a, t which,

when considered for the special values a = a and a = b satisfies relations {T)a,b,

(III)a,6 and (IV) of § 54 and also the following

:

The integrals

(II)'a,6 j |$(n, - 1, t)\dt, j |$(n, 1, t)\dt (€ > 0),

when considered for all values of n sufitciently large remain less that a constant

(independent of e).

Also, let f(x) be any function which satisfies condition (A) of § 51 and is such

that the limits f{a + 0) , /(6 — 0) exist.

Then we shall have

X>>

pb

f{x)^{n, a,x — a)dx = hm I f{x)^{n, b, x — b)dx

= H/(&-0)+/(a+0)].

55. Besides the relations given in Theorems III and IV concerning the func-

tions (p{n, a, t) and (p{n, b, t) (which relations are satisfied in particular by the

function (5) pertaining to Fourier series, with a = — tt or a = tt) it is important

to note certain others which we shall find fulfilled by some of the functions

(p{n, a, t) met with in the succeeding pages but which are not fulfilled by (5).

These relations together with their effects upon the limiting values of the integrals

I f{x)(p{n, a, X — a)dx, I /(.r)$(?i, a, x — a)dx
*Ja Ja

we now summarize in the following four theorems

:
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Theorem V. Let (p(n, a, t) he a function of the real variables n, a, t which,

when considered for the special value a = a satisfies the following three relations

in which n is restricted to positive integral values and in ichich e represents a positive

quantity which may he taken arbitrarily small:

(I)a lim I <p(n, a, t)dt = Gi; e ^t ^h — a (b > a),

Gi being a constant (independent of t)

.

(II) a Relation (II) of § 51 is satisfied when a = a and ^ i ^ e.

(Ill)a \<p{n, a,t)\< B; e ^ t ^ b — a,

B being a constant independent of n and t.

Also, let f(x) be any function ivhich satisfies condition {A) of § 51 and is such

that it has limited total fluctuation in an arbitrarily small neighborhood at the right

of the point x = a.

Then ice shall have

lim I f(x)(p{n, a, X — a)dx = Gif{a + 0).
, n=oo tJa

Theorem VI. Let (p{n, a, t) be a function of the real variables n, a, t ichich,

when considered for the special value a = h satisfies the following three relations in

which n is restricted to positive integral values and in which e represents a positive

quantity which may be taken arbitrarily small:

(1)6 lim I (p{n, b, t)dt = — G2; a— b^t^ — e (b > a),

G2 being a constant (independent of t)

.

(11)6 Relation (II) of § 51 is satisfied when a = b and — e ^ t ^ 0.

(111)6 \<p(7i, b,t)\< B; a- b^t^ - €,

B being a constant independent of both n and t.

Also, let f(x) be any function which satisfies condition (A) of § 51 and is such

that it has limited total fluctuation in an arbitrarily small neighborhood at the left

of the point x = b.

Then we shall have

lim r f(x)ip(n, b, x - b)dx = G2f(b - 0).
71=30 *Ja

Theorem VII. Let (p(n, a, t) be a function satisfying relations (I)a and (Ill)a

of Theorem V but, instead of (II)a, the following

:

(11) a Relation (II)' 0/ § 54 i^ satisfied when a = a, it being understood that

the integration there appearing is then taken from to e instead offrom — e to e.
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Also, let f{x) be any function which satisfies condition {A) of § 51 aiid is such

that the limit f(a + 0) exists.

Then ive shall have

lim I f(x)^{n, a, X — a)dx = Gif(a + 0),
n=co >J a

where <J> is defined by (30)

.

Theorem VIII. Let (p{n, a, t) be a function satisfying relations (X)b and

(111)6 of Theorem VI but, instead of (II)^, the following

:

{ll)b Relation (II)' of § 52 is satisfied when a = b, it being understood that the

integration there appearing is then taken from — e to instead of from — e to e.

Also, let f{x) be any function ivhich satisfies condition {A) of § 51 and is such

that the limit f(b — 0) exists.

Then tve shall have

lim r fixMn, b, x - b)dx = 6^2/(6 - 0),
n=oo tJa

where <J> is defined by (30)

.

The first of the Theorems V, VI results directly upon writing

Xb—a / /"e nb—a \

f{a + t)ip{ii, a, t)dt =
( I + 1 )/(«+ t)^{n, a, t)dt; e >

and then applying to each of the last two integrals the methods already used

in § 48 for the study of similar integrals.

Theorem VI likewise results upon writing

(32) Snib) = r /(6 + tMn, b, t)dt =( f + f
^

)f{b + tM7i, b, t)dt.

Ja-b \ J-e Ja-b J

The proofs of Theorems VII and VIII being likewise readily supplied, are

suppressed.

56. We proceed to make certain observations which will prove useful in

applying the general theorems of §§ 51-55 to special integrals (27).

(1) If in applying Theorem I of § 51 it is found that for some special value

of t different from zero, ^ = ^1 4= say, the function (p{n, a, t) becomes infinite

or otherwise is of such a character that uncertainty arises concerning any one

of the relations (I), (II), (III) when t = t\, then the theorem will still hold good

provided that it can be shown that the integral

h= { \f{a+t)<p{:n,a,t)\dt,

where ^ is arbitrarily small and > 0, approaches (n = 00 ) uniformly the limit

zero for a < a' ^ a ^ 6' < 6, or else is such that for the same values of a and
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for all (positive integral) values of n the same integral approaches uniformly

the limit zero as ^ = 0.

An examination of the method used in proving Theorem I shows at once the

correctness of this remark. More generally, in case of uncertainty of any kind

in the behavior of f{a + t)(p{n, a, t) for the value t = ti ^ (a — a<ti <b — a),

it suffices for the existence of (28) and (29) that relations (I), (II), (III), (A)

and (B) (or in (29) the substitute for (B) there mentioned) shall be satisfied

throughout the two intervals (a — a ^ t ^ ti — ^), {h -\- ^ ^ t ^ b — a)

(^ arbitrarily small and positive) instead of throughout the whole interval (a — a,

h — a), provided merely that the expression I^ above defined has either of the

properties just mentioned.

If the exceptional point h h = a — a then, instead of the two intervals, we
have to consider the single one {a — a-\-^-^t^h — a), while instead of I^

as defined above, we shall have to consider the integral

h^"^ = I
" \Koi+t)<p{n,a,t)\dL:-)= r "

\f{a-^t)^{n,a,t)
'Ja—

a

A corresponding statement may at once be supplied for the case in which the

exceptional point is ifi = h — a.

In the case of two or more of the exceptional points h {a — a ^ h-^h — a)

the corresponding statements are readily supplied.

(2) The conditions demanded in Theorem II may be stated without reference

to the function (p{n, a, t). Thus, it suffices (aside from the conditions upon

f{x)) that the function <l>(n, a, t) shall satisfy relations (I) and (III) of Theorem I

together with (II)' of Theorem II.

This follows from the fact that the conditions placed upon (p{n, a, t) in

Theorem II are there inserted merely that $(w, a, t) may have the properties

just indicated, the latter being those upon which the proof in reality depends.

Similarly, in using Theorems VII and VIII the conditions stated relative to

(p{n, a, t), (p{n, b, t) may be replaced by the same conditions referred to ^{n, a, t),

$(n, b, t).

(3) Assuming that relations (II), (III), {A) and (J5) of Theorem I are satis-

fied, let us suppose that instead of relation (I) we have the following :^^

(I)' lim I ip{n, a, t)dt =
n=oo c/q

I

~"
2 H~ x(oi, t) ivhen a — a ^ t ^ —

h + x(aj when e ^ t ^ b — a,

where x(a, t) is any function of a and t such that

(a) Having given an arbitrarily small positive quantity a, one may determine

a positive quantity ^ dependent only upon a such that

" As in (I) of § 51, it is here to be understood that the convergence (n = oo ) is uniform
for the indicated values of a and /.
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a' ^ a ^ h',

xia, t)\< a when
i _ t < / < t

(6) The partial derivative dxfdt exists whenever a' ^ a ^ b', a — a '^ t

b — a and for the same vakies of a and t is such that

dx
dt

< D = constant independent of a and t.

Under these conditions it is easily seen that the function (p{n, a, t) — dxl^t

comes to satisfy relations (I), (II) and (III) of the theorem of § 51 from which

it follows that for a fixed value of a such that a' ^ a < 6' we may write

-
I /(^) -^1 dx + hm I f(x)(p(n, a, x - a)dx = - S^^ •

tJa L '-'^ J(=x—

a

n=co *Ja ^

Moreover, if (instead of condition (B)) f{x) is continuous throughout the

interval a' ^ x ^ b' , the end points x = a', x = b' included, and has hmited

total fluctuation throughout an interval {a\, bi) such that a < ai < a' < b'

< bi < b, then for all values of a in (a', b') the equation will hold true uni-

formly, it being understood that the right member is then replaced by /(a).

Analogous remarks relative to Theorems (III), (V), (VI) are readily supplied.



Ill

The Calculus of Residues as Applied to the Series Developments for

AN Arbitrary Function.^^ The General Problem of Sturm

57. A comparison of the developments occurring in mathematical physics

for a function /(.t) of one real variable x shows that they are ordinarily of the form

(33)

J f{x)F{x)Hi{\n, x)dx J f{x)Fix)H2{\n, x)dx

Ih{\n, X) -^^h 1- H2(\n, X) ~^^
F(x)Hi'(Kn,x)dx F{x)H2\\n, x)dx

I f(x)Fix)Hm{\n, x)d:i
*Ja

j' F(x)HJ{\n, x)dx

+ • • • + i/„.(X«, x)

where //i(X„, x), H2(kn, x), • • •, HmO^n, x) are m functions of x and of a certain

parameter X which takes different values from term to term in (33) according to

some given law, and where F{x) is a function of x only which is finite throughout

the interval (a, b).

Thus in the case of a Fourier series we have m = 2, i/i(X„, x) = sin nx,

-^2(Xn, x) = cos nx; and a = — t, b = ir, F{x) = 1. Again, in deahng with the

usual expansion of f{x) in terms of Bessel's function of order zero, we have

m = 1, //i(Xn, x) = Jo(Xn, x), a = 0, b = 1, F{x) = x, Xn being one of the roots

of the transcendental equation Jo{x) = 0.

It is to the important developments (33) that we shall hereafter devote our

attention.

The first n terms of (33) when considered for any particular value of x such

as X = a may evidently be put into the form

b

f{x)<p{7i, a, X - a)dx,

where

1^ The calculus of residues was first applied by Cauchy to the study of infinite series, in

particular to Fourier series (cf. Picard, "Traite d'Analyse," Vol. II, Chap. VI, § 9 e< seq). Its

application to the general study of developments in terms of normal functions appears to have

been first made by Dini (cf. "Serie di Fourier, etc.," §§61-64) upon whose investigations the

present § is based.

124
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(34) (p{n, a, X — a) = 2^ 2^ //s(Xr, a) ~t, •

^=''='

I
F(x)Hs\Kx)dx

Upon referring to the theorems of §§ 51-55 it thus appears that in order to

show the summabihty or convergence of series (33) to the value

/(a-0)+/(^+0) /(a+0)+/(&-0)
r- /^ a_ m r ^f^ m

according to the cases there considered it suflSces to show that the conditions

specified for (p{n, a, t) in the same theorems are present when

(35) ip{n, a,t) = 2^2^ Hs{\r, a)——^ .

"=''='
I F{t)H/CKr,t)dt

Thus the integral

(36) I ^(w, a, /)(Z^,

Jo

which plays an important part in these theorems, becomes in the present case

^t n r. f F{a + t)H,(Kr, « + t)dt

(37) I (p(n, a,t)dt = J^J2 Hs{\r, a) — zr, .

^" '=''^'
j F{t)Hs'{Ki)dt

58. Now, the values Xi, X2, X3, • • • , Xn, • • • of the parameter X are usually

given as the roots (or part of the roots) of some transcendental equation ^(2) =
where u(z) is a function of the complex variable z which is analytic throughout

all finite portions of the z plane. Thus in the case of Fourier's series we have

u{z) = sin TTS and in the above mentioned case of the expansion in Bessel's

function of order zero we have u{z) = Jo{z). Moreover, these roots, when

considered as zeros of the function u{z) are ordinarily zeros of the first order and

we shall suppose this to be the case in what follows.

Then the function iv(z) = l/u{z) will be analytic throughout the finite z

plane with the exception of the points Xi, X2, X3, • • • , X„, • • • , where it will have

poles of the first order and, considering d{z) to be any other function of z which

is analytic throughout the finite z-plane, we shall have, provided p is a positive

integer,

e{z)lV^(z){z - \nV = e{\n)AP + [d (z) 10^^ (z) {z - KVV.Sz - X,.) + • •
•

(38) ^ [a(.)..(.)(.-X„).r'
(^ _ ,^)^. ^ ^,_(^)(^ _ ,^),,
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where A is the limit of w(s)(z — X„) as s = X„ and ^1(2;) is a function of z which

is analytic in the neighborhood of the point 2 = X„ and where

[d{z)w^(z){z-\ny]l

indicates the value of the 5th derivative of 6{z)w^{z){z — \n)^ at the point z = Xn-

From (38) we have

e{z)^i-iz) = ^^^^^^ + ^^zr^^. + • •
•

(39)

,
[e(z)iv^(z){z- \nyY.:'

, ,,+ (,_x„)(p-^yr" + ^'^^^^)'

and integrating in the positive direction about any closed contour C which

encloses the point 2 = X„ but no other pole of w{z) we have by Cauchy's integral

theorem

(^"' 2^ J^eW«-''fe)rf. = (^^^lyi
.

If, therefore, we integrate about a closed contour Cn which encloses the first n

of the points Xi, X2, X3, • • • but no other poles of ^(2) we shall have

and hence also

^*2^
l'i22sX.''(^^"'(^)''^ = S (f^Tv.

whenever either side of the same relation has a meaning.

In particular, when p = 1 and p = 2 we have respectively

(43) ^ f d(z)lLiz)dz = T [d{zMz)iz - Xn)]A„,

(44) ^. f d{z)w\z)dz = E [e{z)w\z){z - X„)2]
l-Kl Jc„ n=l

or, since

w{z){z — X„) =

Ki>

u{z)

2 — X„

[e{z)w\z){z - \n)% = e\\n)[l0\\n){z - X„)^] + e{K)[w'{z)(z - ^n)']',.

W'(X„)2 u'Oinf '
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relations (43) and (44) may be written in the form

(45)
±.rm,,^±eiKi
2inJc„u{z) „=iw(X„)'

^^^^
2-KiJcyiz)'^^ ntlU'(Xn) u' (KnY \'

It is desirable to note also that if in (46) we substitute d{z)^{z) for ^(2) we
obtain

so that if
\l/' (Kn)u' (hn) — \p(XnW{Xi) = we shall have

eWnrnXn)
2*'(X.)^

59. We proceed to apply the results in (45) and (47) to the sum (37) which

defines the integral (36) whose properties are desired in order to investigate the

convergence of (33).

Let us suppose that for the given value of a we can construct a function

6{z) which shall be analytic throughout the finite 2 plane and such that its value

at the points Xi, X2, • • • , X„, • • • shall be given by the equation

^ //,(Xn, a) f F(a + t)H,(Kn, a + t)dt

(48) OiK) = E 'y^ u'(K).

As a result of (45) we shall then have

(49) r <p{n, a, t)dt = ^r~. \ -~dz.
Jo 2TriJc^u{z)

If, again, we can construct a function d{z) analytic throughout the finite plane

and subject to the single restriction

^ IIs{\n, a) f F{a + t)IIs{K, a + t)dt

(50) d'iK) = E ^^^-^
u'(Kny,

iA(X„) F(t)Hs'(Kn,t)dt

where \p{z) is any function of z analytic throughout the finite z plane and such

that ^'(\n)u'0^n) = ^{K)u"{\n) then, upon applying (47) we shall have

(51)
J

<p{n,a,t)dt = ^^.j
e(z)Hz) .

dz.

i« Cf. Chapter I, formula (30).
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It thus appears that by means of (49) and (51)^^ the discussion of (37) may
sometimes be transferred to that of an integral of a complex variable z. This

will be the case in the special developments to be considered in what follows.

60. We now proceed to examine the series (33) in some of its more important

cases—viz., those related to the general problem of Sturm.^^ Here we have

TO = 1 and, representing by //(X„, x) the single function Hi{\n, a*), we have by

hypothesis

(52)
I

F{x)Hi\n, x)H(Kn, x)dx = tchen n ^ m.

Moreover, when x is taken between a and h (a and 6 included) the function

II{z, x) is assumed to be analytic in z throughout the finite z plane and real when

z is real; also to be such that when z has any one of the values Xi, X2, • • •, Xn, • • •

it is a solution of a certain linear differential equation of the form

(53) a^(^(^)^^r^) + iP(^>(^) + F,{x)]H{z, X) = 0,

where K(x), F(x) and Fi{x) are functions of x only, while v{z) is a function of z

only.

In such cases the developments (33) assume the form

(54) JlqnH{\n,x),
71= 1

where

(55) Qn =
r f{x)F{x)H{\n, x)d:^

f F{xW(\n, X)dx

We first proceed to note certain general consequences which flow from the

above restrictions upon H{z, x).

From (53) we have

(56) ^(^(•'^)^^— ) + {^(•^)KXJ + F^{x)]H(K, X) = 0,

1^ It is to be observed that if in (49) the function d{z) has singular points within C„ the formula

continues true provided that the sum of the residues of the right integrand at such points be

subtracted from the second member. Similar remarks evidently apply in (51) if 0{z)i(/{z) has

singular points within C„.

1* Cf. DiNi, " Serie di Fourier, etc.," §§ 90-96. The problem here presented has been the

subject of numerous and extensive researches in recent years, but usually under the assumption

(not here introduced) that the differential equation (53) in terms of whose solutions the proposed

development is to be made, shall have no singular points within the (closed) interval (a, b) for

which the same development is to hold. But this assumption unfortunately rules out some of

the most important special developments, such as those in terms of Bessel functions and Legendre
functions. For summary' remarks upon the more recent researches of this character, see Bocher's
address before the International Congress of Mathematicians at Cambridge in August, 1912, § 11,



Problem of Sturm 129

(57) ^(^(•^)^^^^) + {F(^>0<n) + F,{x)]H{K, X) = 0.

Hence, after multiplying both members of (56) by H(Kn, x) and both members
of (57) by H(\n, x) and subtracting, we obtain

F(X) {V(\n) - v(Km)}HiXn, x)H{\n, x)

r5S^ ^
I z-r \[ ur\ ^ dH(Kn, x) dH(\n, x) "[

](58) = -
I

Kix) |_Zf(X„, X)—^ F(X., X)—^^- J I

and therefore

dH(\m, x)
f Fix)H(Km, x)Hi\n, x)dx = ,..^ ,. .

I
Kix) \Hi\n, x)

dx

H{Ki, X) - ri]

Thus, in order that (52) may be satisfied it suffices that the roots Xi, X2, X3,

be so chosen that

(59)

K{b) II(kn, x) ^ H(\n, x) ^
IV \[ ur\ >

^-^'(X^, x) dH(Kn, x) 1- A (a) H(Kn, x) ^ H(Km, x) — = 0,

provided m 4= w- Moreover, among the different ways in which this relation

may exist is that of supposing that for every value of n we have the following

two equations simultaneously:

(60)

K{x) ^ h'H(Kn, x) = when x — a,

K{x) -~^ hH{\n, x) = iDhen x = b,

h and h' being any real constants, including the limiting values A = ± °o

,

h' = dz ^ corresponding to which the same equations become //(X„, a) =
and //(Xn, 6) = respectively. We shall hereafter confine our attention to the

cases in which relations (60) are satisfied. Furthermore, if K(a) =# 0, K{b) 4= 0,

we shall suppose that the transcendental equation v{z) = whose roots deter-

mine the quantities Xi, X2, X3, • • • is taken in the one or the other of the two

following manners:

(61) u{z) = [/i(.T) -f^ - h'Hiz, X)
]^
= 0,

(62) u{z) = [/v(a')^"^ - hlliz, x) ^
= 0,

10
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thus rendering one of the two relations (60) satisfied at once. Similarly, if

K(a) = 0, K(b) 4= we shall use (62). In this case it is to be observed that we

have merely to place h' = (u{z) having been chosen as indicated) to have

equations (60) satisfied ichatever the solution H{z, x) of (53) chosen to be used

in (54). Likewise, when K{a) =}= 0, K{b) = we shall use (61) in which case

the solution II{z, x) of (53) to be used in (54) may be chosen arbitrarily. Finally,

if K{a) = 0, K{b) = the equation u{z) = may be taken arbitrarily together

with the solution II {z, x) without destroying the coexistence of (60).

61. We add that if the solution II{z, x) considered as a function of the two

variables z and x is finite and continuous together with its first and second partial

derivatives : dH/dx, dH/dz, d'^H/dxdz for all real values of x such that a ^ x ^h
and for complex values of z in the neighborhood of each of the points z = X„,

and if the equation (61) {h' finite or infinite) is satisfied identically for all values

of 2 in these regions, then it is easy to evaluate each of the integrals

(63) f F{x)H\\n, x)dx,

which appear in the coefficients g„ of the series (54).

In fact, if we change \m to z, as we may now do, and integrate from a to a;

(a < X < h) we shall have by (58) and (61)

J^Fix)H(z, x)H{\n, x)dx =
^^^^ } ^^^^

^K{x) [h{z, x)
dll(\n, X)

dx

dl

dx
HQ^n, x) —^^—

j J
,

and this holds true for any value of z in the indicated regions.

Whence, upon allowing z to approach the value Xn we obtain under the

present hypotheses

\dH{\n,x)dH(\n,x)
£F(xWiK,x)dx = ^^[Kix){

d\n dx

- //(Xn, X)
d\ndx J J

'

where if desired X„ may be changed to z for values of z in the indicated regions.

Passing now to the limit as a: = 6 we obtain

in which as above we may replace Xn by z provided z has values in the indicated

regions.
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Finally, by use of the second of equations (60) we may write (64) in the

following form when h is finite

:

(65) £n^)u^,^^,^),.-^[m^.,^)\k'^^-^ -^w^l^^ll-

(66)

In like manner, if A = ± co so that i/(Xn, 6) = then (64) may be written

dH{\n, x) dH{\n, x)

£ F(x)H'{\n, x)dx =
-^,^^^^^

^^Kix)
d\n dx

62. Expressions (64), (65) and (66) thus enable us to find under special con-

ditions the value of the integral (63). Among the cases in which the same

special conditions cannot be satisfied, the following are to be especially noted.

If, as we have supposed, F(x) and //(X„, x) are real when x is such that

a ^ X ^ b and if in this interval F{x) does not change sign, then the integral

(63) cannot be equal to zero. Whence, under these conditions (64) cannot be

used if K{b) = {h finite or infinite) or if

(67) H(Kn,b) = {h finite)

or if

(68)
veH(K,x)i^ remx.,x)^

L 5X„ J,
^ o*^

L dx i ^ {iitnjimte)

or (as appears from (65)) if

(69)
L ^-axr^ - ^^-""^ -^Kdx^ i = ^^'fi'''^'^'

63. Returning then to the series (54) and assuming that the quantities

Xi, X2, X3, • • • are taken as the positive roots of the equation (62) while the equa-

tion (61) shall be satisfied identically for all values (real or complex) of z in the

neighborhoods of the same values; assuming also that the partial derivatives of

H{z, x) exist and satisfy such other conditions as we have imposed in § 61, we
may say that unless K{b) = or one of the conditions (67), (68) or (69) is satis-

fied, we shall have for such developments when h is finite

uiz) = [k{x)^--^^ - hlliz, x)'^^,

J F(x)IP{\n, x)dx = -^-^ [/i(X„, .r)

I

a'
dllO^n, X)

din
(70)

-^(^)-ax^„aV--|Jr"7(>o''^'-'^-

On the other hand, if A = ± <» , we shall have

u{z) = II(z, b),
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(71) f n.yHKK, .)</. = "^ [a'W^-^^^]^.

upon applying formulas (49) and (51) we thus obtain the following general

results concerning the integrals (36) pertaining to the present developments:

(1) h finite. Formula (49) here gives

^ ^ i^iz)H{z,a)j^ F{a+t)H{z,a-\-t)dt

(72) I <p{7i, a, i)dt = TTT- \ '~T~^dH 1

where Rn represents the sum of the residues of the integrand at any singular points

which it may have within C„ besides the points Xi, X2, • • • , Xnl i- e., besides those

points z = \n within C„, for which

(73) ^K{x)^^-hH^^^u{z) =0.

Formula (51) here gives

r ,
1 r e{z)yp{z)dz ^

(74)
J^

<p{n, a, t)dt = ^.
J^^ f a^_ T " ^'

L dx '

J,

where R„ represents the sum of the residues of the integrand at any singular

points which it may have within C„ besides those points 2 = Xn for which (73)

exists, where \l/(z) is a function of z only such that \}/'(KnWO^n) — '/'(^n)w"(Xn) =

and where 6{z) is to be so determined that

v'{\n)u'{\n)H(Kn, a)
J

F{a + t)II{Xn, a + t)dt

(75) e'iK) =
^kkWo^)

(2) h = ± ^ . Formula (49) here gives

^ . p'{z)Hiz, a) J F{a + t)n{z, a + t)dt

(76) I <p{n, a, t)dt =^ I / \jjx dz - R^,
•^« ^^'^^»

(^Kj^JH(z,b)

where Rn represents the sum of the residues of the integrand at any singular

points which it may have within C„ besides those points for which

H{z, b) = u{z) = 0.

Formula (51) here gives

r f A^/ ^ r<P(^)e(z)dz
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where R^ represents the sum of the residues of the integrand at any singular
points which it may have within C„ besides those points for which

H(z, b) ^ u{z) = 0,
where

and where

v'0^n)u\Kr^)H(K, a) f F{a + t)H{K, a + t)dt

(78) ^'(X„) = -^



IV

The Summability and Convergence of Important Special Developments.

Developments in Terms of Bessel Functions, Legendre

Functions, etc.

1. Certain Important Sine Developments.

04. As the simplest application of the preceding general results to well-

known developments in mathematical physics, we now turn to the development

00

(79) H qn sin \nX,
n=l

where

(80) g„ = 2j^-^^:pY) X •'(') ^'° ^"'^ ^'^

and where the quantities X„ are the positive roots of the equation

(81) z cos 2 + p sin 2; = 0,

y being a (real) constant =1= — 1.^^

In this case U{z, x) = sin zx so that the differential equation (53) becomes

(82) -^ + zm{z,x) = Q.

Thus, we have /v(.r) = 1, F(.r) = 1, Fi{x) = and, as appears from (80), a = 0,

6=1.
]\Ioreover, equation (61) becomes satisfied identically for all values of z if

we place h' = 00, while equation (62) becomes (81) if we place h = —p.
Considering then that, in the notation of § 60, we here have

u{z) = s sin s + 2^ sin 2

and noting that the solution sin zx of (82) is one to which the general results

obtained in §§ 61, 63 apply, we may write by use of (64) and (81),

/"
. „ - 1 [ d sin zx d sin zx . d^sinzx']

I snr zxdx = tz- — _ . sin zx - _

Jo 2z L ox az azdx J^=i

1 siri z
= -^[z cos^ z — sin 2 cos z -\- z sin^ z] = ~c^^ [z^ + p{p + 1)]

1^ It will be noted that this form of development is the one required, for example, in the

problem of the cooling of a sphere in air at temperature zero. Cf . Byerly's Fourier series (Boston,

1895), Chap. IV, § 67.

134
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or, since

we may write

X
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sin^ \nxdx = .^^
2" [V + p(2^ + 1)]

• 2 \ ^
Sin'' A„ =

Xn' + P

I Dill /\n*C Cc^U/ r\ /N I 9\ •

Jo 2(X„'= + p')

Thus it appears in the first place that the coefficients g„ as calculated by (55)

agree with the given values (80).

Now,
^(2) — 2> sin 2

u (z) = — 2 sin z + cos z -j- p cos z = — 2 sin 2 + (1 + p) ,

^"(2) = — sin 2 — 2 cos 2 — sin 2 — p sin 2 = — [2 sin 2 + ii{z)],

and hence

(33) j w'(Xn) = -~ [X„2 + P(P + 1)],

L u"(Kn) = — 2 sin X„,

so that

(84)
I

sin^ Xnir dx = -

Jo X„2 + p(p+l)'

Let us now avail ourselves of formula (77).^'' In order to do this we are

first to determine the function \{/{z) according to the condition

A possible choice of 1^(2) is xpiz) = 2^ + p(p + 1) since from (83) we have

u['(Knl = 2X„

Assuming that \l/(z) has been chosen in this manner, we now have to deter-

mine a function ^(2) according to the condition (78) which, by means of (84)

becomes in the present instance

sin Xno: I sin X,i(a + t)dt

e'(K) = 2[x.2 + p(p + 1)]
-^^

'/'(Xn)

2 sin X„a I sin X„(a + t)dt.

Jo
20 DiNi has shown through an elaborate investigation that this formula will always lead to de-

cisive results whenever the solution H{z, x) has the special form II (zx); that is, when the variables

2 and X enter only through their product. (Cf. "Serie di Fourier, etc.," §§ 97-109.) The well-

known developments in terms of Bessel functions form a special class of this kind.
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Hence, let us take 6{z) such that

e'{z) = 2 sin za j sin z{a + t)dt = I [cos iz — cos (2a + t)]dt.

Jo Jo

In particular, let us take

e{z) = j I [cos tz - COS (2a + t)z]dzdt = I
— ~ ^

dt.

Formula (77) thus becomes

r If z' + p(p + 1) r [sin tz sin (2a +0^ 1 ,,

,

Jo
^^'^' "' ^^'^^ ==

27^X [.cos2+2'sin.]2 i L
~1

2a + ^ J
^^^'

(«^) =2^r^^x

c„ [2; cos 2 + 2? sin z]

1 + a;i(2;) sin tz
dz

Q^ [cos z + ^2(2) sin 2]^ t

_ 1 r_d^ r [1 + coi(2)] sin (2a+02 j

27ri Jo 2a + ^ Jc [cos 2 + 0^2(2) sin 2p '

where the contour C„ is so taken as to inclose the roots Xi, X2, • • • , Xn and only

these roots of the equation ^(2) = and where, in the last two integrals we have

placed for simplicity

y(p + 1) ,. V
^^1(2) = ^2

' '^'2(2) = -.

We observe at this point that in applying Theorems I and II of §§ 51, 52

to the function (p{n, a, t) of the present development, the values of a and t with

which we shall bi concerned are such that

r < a' < a < '/ < 1,

(86) \ - a^t^l - a,

[0 < a' < a ^ 2a + t ^ 1 + a < 1 + b' < 2.

Returning then to (85), let us take as the contour Cn the rectangle formed in

the 2 plane {z = x -\- iy) by the lines z = x -\- ij, z = x — ij, z = iy, z = k \- iy\

j being any positive quantity arbitrarily large and k being any positive quantity

lying between X„ and X„+i. Now, the function appearing in the integrand of

(85) is an odd function of 2 which remains finite in the neighborhood of the

point 2=0 since p ^ — 1. Whence, the portion of the integral in question due

to integration over the 2/-axis is equal to zero. Upon the sides which are parallel

to the a:-axis we have dz = dx. Whence, considering first the side upon which

z = X -\- ij the last integral of (85) extended over this side becomes

J_ ndt r
27rWo ^Wo

{1 + coi} {sin Ax cosh Aj-{- i cos Ax sinh Aj]

where yl = 2a + ^, Di= cos x cosh j — i sin x sinh j + C02, D2 = sin x cosh j

+ i cos X sinh j.
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Now, the functions wi = o)i(z), coo = ^2(2) are each less in absolute value

than a constant (independent of z) provided \z\>Q= fixed mimber > 0.

Thus, we have but to make use of the well-known properties of the hyperbolic

functions to see that if we place j = + co the expression above wall approach

uniformly the limit zero for all a and t satisfying relations (86).

Similarly, we reach the same result for the last integral of (85) when extended

over the side upon which z = x — ij.

Turning now to the first integral in the second member of (85) extended over

the sides upon which z = a; ± ij, we note that

and hence,

sin tz sin tx . . . sinh tj—— = —-— cosh tjzti cos tx -—-—

sin fe , . .

.

• 1 .

—z— = X COS tix cosh tj ± ij cos tx sinh tij,

where ti and ^2 are values lying between and t. Moreover, for all values of t

under consideration in (86) we have
|

^
|
< 1 so that if we place j = -\- <x> as

before, the first integral in the second member of (85), like its last integral, will

approach uniformly the limit zero for all values of a and t concerned in (86).

We turn then to the consideration of the last member of (85) when extended

over the side of the rectangle C„ which is parallel to the ?/-axis. Here we have

z = k -{- iy, dz = idy and, having taken i = + 00 , we see from what has just

been said that for all values of a and t in (86) this member reduces to

27r Jo J- 00

1 + ^1 sin iz

dy
[cos s + a;2 sin 2]^ t

(87)

_Jl r ^^ r U + ^i) sin(2a+02
27r Jo 2a+ tj_^ [cos z -\- 0^2 sin zf ^'

in which it is understood that z = k -\- iy.

Now, it sufiices for our purpose to examine the behavior of (87) as k = 00

and we may take for k any number which, at least for all values of ii greater

than some fixed value, increases indefinitely with n without at any time being a

root of the equation m{z) = 0; i. e., of the equation

E = cos z + coo sin s = 0.

Thus, we may take k = mr, in which case

jB^ = [cos (mr + iy) + (^2 sin {mr -\- iy)]- = coslr y[l + 10)0 tanli y]-

and hence
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(88)

1 If . 2 ^ tanh^ y + 2iooi tanh^ y

E'= ^^YTyV
"''"'''' ^^""^y ~ '''

1 + 2io^, tanh y - <.,' tanh^ y

1

cosh^ y

tanh w 5

1 + 7—-^ + r.(,

where, upon recalHng the form of 0^2(2), we have 7 = — 2ip and therefore inde-

pendent of z, while 5 depends upon z but has a modulus less than a certain fixed

number M for all values of |
z

|
> a fixed number ko.

Thus expression (87) becomes

(89)

where

y^'IK^+^^^^'^^+W27r

sin tz
dy

z^ J t cosh^ y

-2^1 2^+lLV'+^'"^^^ + ^0 cosh^^ ^^'

1 + - tanh ?/ + -J = [1 + coi] 1 + -tanh 2/ + -J ,

2 z" L ^ ^" J

so that 5i like 5 has a modulus less than some constant Mi when
1 2 1 > a fixed

number = ki.

Considering now the terms in (89) which have 2- in their denominator, we see

that for all values of a and t in (86) these terms approach uniformly the limit zero

as A; = CO . Thus, since

(90)

sin (2a + 0^

cosh^ y
^ sm {2(x + t)k —

cosh^ y

+
sinh (2q; + Qy

cos (2a + i)k r9 i

cosh^ 2/

where < a' ^ 2q; + i ^ 1 + 6' < 2 we have, however great
1 2 1 may be,

sin {2a -\- t)z

so that

cosh^ y

1 r dt r* 5i sin (2a + t)z

-Jo 2a+U-co22

<2,

27r Jo 2a + ^ J_oo 2" cosh^ ?/

In like manner, noting that

sin tz sin tk

dy
. 1 C^K.. r dy

sinh ty

Ml
a'k'

(91)

cosh <?/ + i cos i^-

Z V C

= ^* cos ^i/w cosh ty -\- iycos tk cosh t2k,

where ti and ^2 lie between and t, and recalling that for all values of t under
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consideration we have |^| < 1, we may write

II r^. r ii sinfe
. ^Mi f" r dy ^ My

27r Jo
^^ 1. z' t cosh^ 2/

^^ = TT X J-» /^-^ + 2/^ ^'

Similarly it appears that the derivative with respect to t of each of the same

terms of (89) has the properties just indicated.

Thus (89) reduces to the form

1 (•• dt f/, ,y(k-iy)^
, \ sin (2a + t)k cosh (2a + t)y ,

(92) -2ii 2^+'tL V + l^T^*^"*^ V cosl?^
'^'

i r dt r(, ,

y(k-iy)^
, \ cos (2a+ t)k sinh (2c,+ t)y ,

+ A (a, t, k),

where, for all values of a and t under consideration, A(a, t, k) and dA(a, t, k)ldt

converge uniformly to zero when ^=00, Or, expanding and dropping integrals

which vanish identically since they are relative to odd functions of ij, (92) assumes

the form

J^ r' sin kt n cosh ty _ ji r' sin kt f"" y tanh y cosh ty

2tX t "^^l^cosh^i/^^ 27rJo t ^^J_Ak'+y')cosh'y^

yi r 7 7 r* ^ tanh y sinh ty
,

+ 2rX ^°'^''*L(1-^ + /)(cosh'y'^^

1 r'sin (2a+<)i J, P^osh (2a+0s' .

(93) - 2.1 2. + ^ ''L -
cosh',

'y

ji f sin (2a; + t)k r y tanh y cosh {2a + t)y

+ 27rJo 2a +t "^^ X^k^' + f cosh^ y
"^^

yi r cos i2a -\- t)k . f" k tanh y sinh (2a+% ^ , ,, ,7.

27rJo 2a H-^ J-oo/'^-H-r cosh^ y

We proceed to consider separately the six integrals here appearing.

The first may be put into the form

(-) ^-^-fft7- + fJ''/.«-/'(0)l£?<^^
where

, , sin t r^cosh ty .
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Whence, if ^ > the limit of the first term in the last member as ^ = oo is

/i(0)/4 (of. Appendix, Lemma II). But

and hence as k = <x> the term just mentioned approaches the limit ^ when ^ > 0.

Again, by breaking up the integration in the last term of (94) into that from

t = to t = 7] plus that from t = rj to t = t (rj arbitrarily small and > 0) and

obser\ing that the function /i(^) has limited total fluctuation in the neighborhood

of the point t = 0, it follows that the same term approaches the limit zero as

k = 00 (see Appendix, Lemmas I, III).

Likewise, if i < we obtain lim Zi = — ^.
A-=oo

The second and third integrals of (93) may be reduced respectively to the

forms
yi r' sin kt , T" k^ y tanh y cosh ty

~ 2Tk X ~kr "^^
J_„FT? ^osh^^^ '^^'

r' 7 7 r" ^'" y tanh y cosh tiy
I cos kt at

I 7^—;—,
, ^, ay,

Jo J-^k^+y cosh^w ^'

where tx is a quantity lying between and t. Since we have alwaj^s

P , sin kt
^1. -T:r-<h

k^ + y^^
' kt

it thus appears that the limit approached by each of these integrals as A; = oo

is equal to zero.

In order to study the fourth integral of (93) let us make therein the substi-

tution 2a -]- t = 2 — r. Since k = 7ir the integral in question becomes

27r J2(i_,) 2 - r J_^ cosh^ y
^'

in which it is to be noted that for all values of a and t in (86) the quantity r is

positive {I - h' < T <2 - a').

The expression (95) is of the form

(96)

where

If . . s
sin kr

^TT J2(1.-a) Sm T

We have now but to apply Lemma I of the Appendix to the integral (96)

in order to see that for all values of a and t with which we are concerned the

expression (96) converges uniformly to zero when k = oo

.
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Finally, the fifth and sixth integrals of (93) are readily seen to approach the

limit zero when ^- = <» and the convergence is uniform for all values of a and t

entering into (86), since we have always \2a -^ t\< 2.

In summary, then, the present function (p{n, a, t) satisfies relation (I) of

Theorem I, § 51, it being understood that we here have a = 0, h = 1.

We turn therefore to a consideration of relation (II) of the same Theorem.

This relation is at once seen to be satisfied since, as just shown, all the integrals

of (93) converge uniformly to zero for all a and t under consideration except the

first, and this integral satisfies relation (II) of the theorem by virtue of Lemma III

of the Appendix.

Again, relation (III) of Theorem I, § 51 is readily seen to be satisfied in

the present instance upon noting that the function (p{n, a, t) is here equal to the

derivative with respect to t of the expression (93) and that dA(_a, t, k)/dt con-

verges uniformly to zero, as already pointed out, when k = co

.

Before summarizing these results into a theorem respecting the series (79)

we turn to consider the application which may be made in the present instance

of the general Theorem II of § 52, thus arri^dng at certain results concerning the

summability of the same series. In view of the existence already demonstrated

of relations (I) and (III) of § 51 it will here suffice to consider whether relation

(II)' of § 52 is here fulfilled. Moreover, the properties of the integral

1 \^{n, a, t) \dt;

^0
(98) \^{n,a,t)\dt; -e^t^e

of the present development are readily obtained from the expression (93). In

fact, in order to be assured of the desired properties of (98), it suffices to show

that each of the seven terms of (93) when affected by the operation

1 71

-T,
fl 71=

has these properties, it being understood that absolute values are employed under

each integral sign and in the integrals which constitute the expression A(a, t, k).

For the sake of simplicity and also because the indicated studies are readily

carried out, though the forms in (93) are complicated, we shall here suppress the

details, noting simply that the desired result follows in each case when we make

use of Lemmas IV and V of the Appendix and make use also of (90) and (91)

in the study of

-J2A{a,t,k).
n n=0

We turn then to note the application of Theorem \l of § 55 to the present

development in order to ascertain the limit approached by the series (79) when
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For this purpose we first observe that the integral

<p{n, 1, t)dt

is here obtained by placing a = 1 in the expression (93). In the resulting new

expression the first three integrals, when considered for values of t such that

— 1 ^ ^ ^ — e are readily seen to have the properties already obtained for the

corresponding integrals for the case < a < 1 (in which case — \ < t instead of

The fourth term, however, does not approach the limit zero in case o: = 1

since the lower limit of integration in (95) is now equal to zero so that the reason-

ing before employed can not be used. The resulting integral now assumes the

character of the first integral of (93) and if treated in the manner naturally

suggested by the analysis of that integral we find directly that for the values of r

under consideration the limit approached as Z: = oo is — /i(0)/4 where /i(0)

is to be determined from (97). In order to find the value of /i(0) it is desirable

to make first the following general observation:

If (p{y) is a function of the real variable y which, together with its first deriva-

tive, is finite for all values of y then, for any number 6 such that \Q\< 2 we shall

have

f" , , cosh dy
,

e f" ,, , sinh dy
,L ^^^^ cosh^"^ ^^ = 4^=tJ_„ ^ (^^ cosh^y
^y

(99)
2 r ,, , cosh % sinh 2/ , .

6 T" , Posh 0?/ ,

+ ^ZTe^J_ ^ (2/) cosh^^ ^^ + 4^0^L ^^^^ cosF"^
^y-

In fact, integrating once by parts we obtain

n ^ -cosh 02/ 1 n .sinhgy

noo^
L^'^'^^^o^y'y^-'eL^^y^^^^y'y

^^'"'
2 f , , sinh By sinh y ,

and in like manner we may obtain also

f"
, , sinh By sinh y ^

1 f" ,. x
cosh dy sinh y ,

J_,
^'^^ cosh' y '^y=--e}_J (^> ~^.\fy~- "^y

(101)

,
2 f" , , cosh $y , 3 f" ,, , cosh By ,

^-eL-'^y^ J3ii?i^y-elj ^y^ ^o^y ^y-

Whence, upon combining (100) and (101) we obtain

P ^
nosh 02/ 1 f" sinh 02/ 2 T* cosh 0y sinh 2/

4 f" , , cosh dy , 6 r=° , , cosh 6y .

+ 6^L ^^y^ c^sh^y ^y '
e-^L ^^^^ cosh^^

^'

and this equation at once gives (99).
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Similarly, we may find an analogous form for the integral

f»/—

c

^ sinh dy ^

Thus, for the function /i(0) where /i(t) is defined by (73) we may write

,^^^ .. sinr f°° cosh(2-T)y ^ .. f ^ sin r f
°°
cosh (2-r)y ^ ]

_3 p cosh 2y _3/ r°° dy p tanh^ y \
~ 4 J_„ cosh-* y ^ ~ 4 \ J_„ cosh^ y J_^ cosh^ y ^ J

=
I (

[tanh yr^ + i [tanh^ 2/]^„ )
= 2.

As to the fifth integral of (93) when a = 1, the values of t to be considered

are as before those for which ^ t ^ — 1 and for these we have

|2a+ t\= |2 + ^!^2

instead of [2 + ^| < 2. The reasoning employed in studying the corresponding

integral when < a: < 1 can not therefore be employed. However, if we break

up the integral in question into that from t = to t = ei plus that from t = ei

to t = t (ei arbitrarily small but > 0) the last of the two integrals thus obtained

will have the limit zero as A: = oo since for the values of t concerned we have

|2q: + ^|^2— ei<2; while the first of the same integrals may be made arbi-

trarily small with ei since by placing

tanh y cosh (2 + t)y cosh {2 + t)y

^^^y = *'<2') -^i^lT • ^(^/^ = *•"'•> 2'

and applying (99) we see that the integral

L
y cosh (2 + t)y

,

-00 ^'^ + 2/^ cosh^ y

remains less in absolute value than a constant independent of ei for all values of t

such that — €i ^ ^ ^ 0.

Similarly, when a = 1 the sixth term of (93) may be neglected in the limit

as A: = CO

.

Thus condition (1)6 of Theorem VI, § 55, becomes satisfied in which in the

present instance we have 6^2= — ^ ~ 2 — — 1(q:= 1, a=0, 6= 1).

Relations (II);, and (111)6 of § 55 as well as (11)6' are now readily seen to be

satisfied (as in the studies already carried out in connection with (93)) so that

by virtue of the general theorems of §§ 51-55 we reach in summary the following



144 SUMMABILITY OF FoURIER SeRIES AND AlLIED DEVELOPMENTS

Theorem. Iff(x) remains finite throughout the interval (0, 1) with the possible

exception of a finite number of points and is such that the integral

(102) r\f{x)\clx

exists, then the series

(103) 2 qn sin \nX

in tvhich

On = 2 -v o i"—7—;

—

Tn I f{x) sin \nxdx: p = constant =}= — 1,
Xn + p(p + 1) '

I f{x) sin \nxdx;
Jo

\n being the nth positive root of the equation

z cos z -\- p sin 2 = 0,

loill converge at any point x (0 < .r < 1) in the arbitrarily small neighborhood of

which f(x) has limited total fluctuation, and the sum will be

H/(-^-0)+/(.r+0)].

Moreover, the convergence loill be uniform to the limit f{x) throughout any in-

terval (a', b') enclosed U'ithin a second interval (ffi, bi) such that < ai < a' <. b'

< bi < 1 provided that f(x) is continuous throughout (a', b') inclusive of the end

points X = a', X = b' and has limited total fluctuation throughout (ai, bi).

Also, if f{x) remains flnite throughout the interval (0, 1) with the possible ex-

ception of a finite number of points and is such that the integral (102) exists, then

the series (103) ^vill be summable (r = 1) at any point a: (0 < a: < 1) at which the

limits f{x — 0), f{x + 0) exist and the sum will be

i [/(.r-0) +/(.!• + 0)].

Moreover, the summability ivill be uniform (§ 45) to the limit f{x) throughout

any interval {a', b') such that < a' < b' < 1 provided that at all points ivithin

{a', b'), inclusive of the end points x = a', x = b', the function f(x) is continuous.

Under the same conditions for f{x) when considered throughout the whole interval

(0, 1), the series (103), when considered for the value x = \, will converge to the limit

/(I — 0) provided f{x) is of limited total fluctuation in the neighborhood at the left

of the point x = \ and will be summahle (r = 1) to the limit f{I — 0) ichenever this

limit exists.

65. It may be observed that in the exduded case for which p = — 1 the

methods which we have followed may be readily altered so as to yield corre-

sponding results. In this case the integrand of (85) has a pole at the point

2 = so that this point should be excluded from the contour Cn- Supposing

this to have been accomplished by means of a small semicircle extending to the

right of z = 0, we may then take as Cn the resulting contour in part rectangular
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and in part semicircular. If the integrations be now carried out as before over

the respective portions of Cn, that arising from the semicircle will be equal to

— ^r where r represents the residue of the integrand of (85) corresponding to

the pole 2=0. Except for this auxiliary term, the reductions are the same as

before, so that in applying the general theorems of §§ 51-55 we encounter an

application of the remark (3) in § 56. A similar instance will occur in connec-

tion with the developments in terms of Bessel functions, to which we now turn,

and in that case we shall elaborate the consequences at some length, though

such studies will be omitted for the sake of brevity in connection with the present

series (103).

2. The Developments in Terms of Bessel Functions.

66. As a second application of the general results obtained in §§ 51-55 we
shall now consider certain developments in terms of the function P^(z) defined

by the equation

where Jy{z) represents Bessel's function of order v. The developments in

question are closely related to the well known developments for an arbitrary

function in terms of Bessel functions and at once yield, as we shall show, results

of considerable generality concerning the summability and convergence of the

latter.

For the function P^(2;) as thus defined, we have, when v 4= negative integer.

P (^^) = '^^^a^ = ^ r 1
v""> j_

"^^^
(zxY 2T(z/+l)L '"''- '

""

(104)

{zxY ~2T(z.+ l)L 22(z.+ l)"^24-2!(^+l)(^+2)

{zxf
_

26.3!(^+l)(^ + 2)(^ + 3)

while the equation (53) becomes

^
-^+22a;2''+ip^(s.r) =

dx

or, placing for brevity P^(2;.r) = P,

d-P dP
(105) ^^ + (2, + 1)— + 22,.p ^ 0.

Taking a = 0, b = 1, the development (54) in terms of the functions P,,(X„.r)

becomes

(106) llqnP.iKx),

11
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where

(107) ?n =
(KnX)dx

Equations (60) become
Jo

x-''+'PJ'{\nX)dx

(108)

,^.2.+i p^(X„.r) - hT^iKx) = ichen x = 0,
ox

3,2.+i p^(X^3.) _ /iP^(x,,r) = when x = 1.
ox

Of these the first is seen to be satisfied identically for all values of z if we place

/?' = and assume j' > — 1, while the second gives as the equation u{z) =
(cf . § 64) of the present developments,

dPM
u{z) = z

dz
- liPXz) = 0.

We may therefore apply (64) and write

dP dP
jr'.-.p.w.. = ^['/-'^-p^l

or smce

we have

dP zdP

dx dz

a^P z d^P

d-P

dzdx Jx=i

dx X dz ' dzdx x dz^

'

dPY_l^dP z ^d^P

(109)
L

by (105).

Thus, \i h = ± CO so that u(z) becomes simply P^iz), we have

(110) f x-^'+'PJ'iKx)dx = i
(£ ^.(2)

)]^^
= h^'O^nY

and, since we then have by (105),

it appears that if we wish to apply (77) in the study of the function (p(n, a, t)

of the present developments we may take at once \l/(z) = l/s-""*"^ and ^(2) such that

(111) d'{z) = 2z'"'+'P{az) r (« + ty-''+'P{(a + t)z}dt; P = P,.
Jo
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On the other hand, if h be finite so that u{z) = zP'{z) — hP(z), we shall

have by (109)

(112) J\'-'+'F-(Knx)dx = ^^^ {h(2v + h) + X„2}.

Now, we have by (105)

u'{z) = zP"iz) + (1 - h)P'iz) = - {2p+ h)P'(z) - zP{z),

i2v-{- 1)(2j/+ h)
u"{z) = - (2^ + h)P"{z) - zP'iz) - P(z) = ^ ^ ^^ ^ ^ P'iz)

Whence,

- zP'{z) + {2v + A - l)P(s).

so that

An

^"W = ^^¥ {^(2^ + 1)(2^ + /^) + (2^ - 1)X„2},

u'{Kt ^ 2{/i(2^ + /i) + Xn'l

r a:2''+ip2(X„.T)(/.r

w''(Xn) 1 Klv + l)(2j' + /O + (2^/ - l)Xn2 2j/ + 1
,

2X„2

W'(X„) Xn /i(2j' + /l) + Xn' Xn ' ^(2j/ + A) + Xn^
*

Thus, in order to satisfy the conditions relative to -^{z) in the present case

we should take it so that

lA'(z) 2j. + 1 2z2

i^iz) Z ' ]l{2v^ /0 + 22-

Let us therefore take

]i{2v + A) + z2

i^iz)
z,2»'+l

in which case it appears that we may take d(z) as before, viz., such that equation

(111) is satisfied.

Now we have from (105)

with a similar equation obtained by replacing a by o: + i^- Hence,

[{a + ty - a'']z'''+'P(az)P{{a + t)z]
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Placing for convenience a -\- t = (3 and letting accents represent differentiation

with respect to z, we may therefore write

r z'''+'Piaz)P{^z)dz = J^,[P'(az)P(l3z) - P'{^z)P(az)]
Jo pa.

so that both when h is finite and when infinite we may take

(113) e{z) = 2z^"+'
X'^^^-

[P'(az)P{(3z) - P'mP(az)]dt.

Upon noting the analytic properties of the functions \p(z) corresponding to

the two above mentioned cases and of the function d(z), it appears, upon applying

(77) that the integral (36) of the present developments will be given by the ex-

pression
H /,2.+i r P'(az)Pm - P'mPiaz)1 n 8^"+^ r

(114) -:
^2 Jt

P\z)
dz

or

according as ii{z) = P(z) or 2i{z) = zP'{z) — hP(z).

It is to be noted also that in the developments (106) we shall have by (110)

and (112)

2 r^
Qn = p//^ s2 I f{x)x^''+^P(KnX)dx

or

2x ^ r^

^" " [h{2p +h) + \J]P'{K) Jo
/(^)^"'"^'^(^-^)^^

according as the quantities Xi, X2, • • • are the roots of P{z) = or

zP'(z) - hP{z) = 0.

These results premised, let us now consider the rectangle in the z plane whose

vertices are the points z = ij, z = k -\- ij, z = k — ij, z = — ij, j being any

positive quantity arbitrarily large and k being any positive quantity lying be-

tween Xn and Xn+i where Xi, X2, • • • represent the successive positive roots of the

equation P{z) = or zP'{z) — hP(z) = according as we are dealing with (114)

or (115). From the boundary of this rectangle let us exclude the point 2=0
by means of a small semicircle of radius rj and let us now take the resulting

contour in part rectangular and in part semicircular as the contour of integration

Now, the function appearing in the integrand of either (114) or (115) is an

odd function of z and hence the two portions of these integrals extended along

the y axis mutually destroy each other, while in either case the portion extended
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along the semicircle may be made arbitrarily small with rj unless in (115) we
have ^ = 0. In this exceptional case the integrand of (115) has a pole of the

first order at the point 2=0 and hence, upon applying Cauchy's integral the-

orem, the value of the contribution to (115) arising from the semicircle in question

becomes

- {2p + 2) r ^^''+^dt = q;2''+2 - /32''+2.

Jo

(117)

In order to discuss the remaining portions of the integrals (114) and (115)

we shall now make use of the following established result :^^

" Representing by J^(z) Bessel's function of order v we shall have when
V > — ^ and z has any value except zero whose real part is positive or zero

(116) JM = - -i-[^i(z)e^(-«2.-l)/4].) _ ^^(^Sjg-i(.-[(2.-l)/4].)-|^

'\2Trz

where

and where, when lz| is sufficiently large, these expressions *Si and *S2 may be

expanded into the forms

(118)

^f^ "^^ r(^ + i + n) 1

^'^'^ = h iXM^I)i>TI^^) (2^- + ^'^'' '^'

in which m is any positive integer and in which the expressions 9i(;:, v) and

62(3, v) become infinitesimals of order as high as the 7?zth when |s| = 00 and, at

least when v > -\- ^, possess first derivatives which as
|

z
|

= 00 become infinitesi-

mals of order as high as the {m + l)st."

Placing — i = e'"'''^ in (116) we obtain

JXz) = -7^[5i(z)e*^^-f^'''-^^/''^'^)+ 52(s)e-«^-«'^-^^/'i'^i

Whence, upon expanding and making use of (104), we have

^^(^) = 2^)>^ [ {^^(^) + ^2(^)} cos (2 - ^tt)

+ i{Sr(z) - S,{z)] sin i^z - —^tt)],
21 Cf. H. Weber, Math. Annalen, Vol. 37 (1890), pp. 404-416. The facts which we shall

state regarding the derivatives of 61(2, p) and 02(z, p) are not explicitly obtained by Weber, but
follow at once from his analysis.
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SO that by (118) we may write when v > ^ and when the real part of z is positive

(or zero)

(120)

^.(2) = '\^^^^^H^)L^^'^
'^^'''^^ cos\^z-~'^j—Trj

. / 2p-\-l \
+ ^{Z, v) sin I Z

^
TT I

where the functions e{z, v) and f(z, v) become infinitesimals of at least the

second and first orders respectively as
1 2 1
= co and possess first derivatives which

as
I

z
I

= 00 become infinitesimals of at least the third and second orders respec-

tively.

Moreover, by use of the relation Py{z) = {2v + 2)P^i{z) — z^P^^iz), we

may readily show that (120) holds true for all values of v for which P^(z) has a

meaning

—

i. e., unless 1/ is a negative integer.

Furthermore, since P'{z) = — zP^^i{z) we see that unless j^ is a negative

integer we may write

(121)

p/(2) = _ y^l^-—^^Y [l + y]{z, v)] sin [z -
-^^-^-^J

( 2?/+ 1 \1
+ Q{Z, V) cos I Z ^ TT J

J

where 77(2, v) and ^(2, v) have the properties mentioned above for e(2, v) and

f (z, v) respectively.

Equations (120) and (121) having been obtained, we return now to the dis-

cussion of (114) and (115) when the indicated integration is extended over

the portions of C„ remaining after removing the semicircle of radius 77 and the

portions of the y axis. Placing for brevity

21/ +1 /2
a=--^-7r, c=^-,

we have by (120) and (121) for all values of z upon these portions of C„, unless

a = or i8
= 0,

(122) P{pd) = , w+(i/2) [{l + €(az)} cos {az - a) + ^{az) sin (az - a)],
\CX.Z)

(123) P'{az) = , .,!(! ;2) [ U + r){az) \ sin {az - a) + e{(xz) cos (az - a)],

(124) Pm =
!^o/2) [{l + f(/32)} cos (iSz - a) + r(i32) sin {^z - a)],

(125) P'ifiz) = , ~,!a.) [ { 1 + 77(i3z) } sin (^z - a) + Sm cos (/32 - a)],
z{pz)
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and, excluding the case in which a = 0, we observe that in applying Theorem I

of § 51 to the integrals (114) and (115) in question the values of a, t and fi
= a }- t

with which we shall be concerned are such that

< a' < a < 6' < 1,

— a = t ^ 1 — a,

0<a'<a^a + p^l + a<l + h'<2,

while in applying Theorems VI and VIII of § 55 for the case in which a = 1,

we shall have — l^t^0,l^a-\-^^2.
However, when ^ = — a we have /3 = a + i = so that expressions (114)

and (115) cannot be used for all the values of (3 with which we shall be concerned.

Let us therefore exclude for the present the value t = — a from our investigations,

treating it later as one of the exceptional values of the t^^pe mentioned in remark

(1) of § 56. Thus, representing by ^ an arbitrarily small positive quantity, we
proceed to study the integrals (114) and (115) for all values of a, t and jS satis-

fying the relations

< a' < a < b' < 1,

(126) -a+^^t^l-a,
0<a'<Q;<a+^^a + ^^l + a<l + 6'<2,

or

a = 1,

(127) - 1 + ^ ^ i ^ 0,

1 ^ a + /3 ^ 2.

From (122), (123), (124) and (125) we find upon performing the indicated multi-

plications that

^^[P'(«.)P(^.) - P'mPiaz)] =-
,2.-^(^2 _ -̂^(^)

X [{a[l + €(l3zm + vic^z)] - (3d{(3z)Uaz)} sin (az - a) cos (/3s - a)

-
1/3[1 + e{az)][l + -ni^z)] - adiaz)^(^z)} sin (/Ss - a) cos {az - a)

+ {a[l + 7/(ce2)]r(/32) - ^[1 + vm]tiaz)] sin (az - a) sin {(3z - a)

+ {a[l + e(l3z)]d(az) - /3[1 + e(az)]dm\ cos (az - a) cos {^z - a)]

— iS. _/^Y+(i/2)
o?)\a) ^"1 sin {az — a) cos (/Sz — a)

22^+1(^2 _

+ B sin ((Sz — a) cos {az — a) + C sin {az — a) sin {^z — a)

+ D cos {az — a) cos {^z — a)]



152 SUMMABILITY OF FoURIER SeRIES AND AlLIED DEVELOPMENTS

_ (3.
//Q\^+Ci/2)

„ 2H-U/Q2 n , , [{A - B) sin (a - ^)z + {A -^ B) sin (a + /3 - 2a)z

+ (C + D) cos (a - (3)2 + (Z) - C) cos (a + i3
- 2a)2],

where ^, 5, C and D are used for brevity to denote the respective coefficients

given above of sin {az — a) cos (/3s — a), etc.

Now, we may write

A- B= {cx + /3)[1 + p,iz)], A + B= {a- /3)[1 + 2^2(2)],

C + Z) = (a - i3)p3(2), C - 2) = (« - ^)p4(2),

where, recalUng the properties of the functions e{az), ei^z), etc., we see that for

all values of a, t and /S in (126) and (127) and for all values of z now under con-

sideration the functions pi(z), ^2(2), 2^3(2) and 2^4(2) are finite and vanish uni-

formly like I/2-, 1/2^ 1/s and I/2 respectively as |2|= co. We note also that

these functions may if desired be put in the forms

, . 60 / X
^0 , . do eo

^ s fo . 90

3 2 <6 »i til Aj

in which rfo and /o depend only upon a and jS and are finite for all values of a

and /3 in (126) and (127) while &o, co, e^ and <7o depend also upon 2 but for all

values of a and jS under consideration and for all values of s under consideration

and such that \z\> ^ = constant, are less in absolute value than certain con-

stants independent of a, (3 and s. For the same values of 2 we have also

P(z) = -i;:f(i]^) [1 + e(2)][cos (2 - a) + u{z) sin (2 - a)]

zP'{z) - hP{z) = ^-^^) 1 + 77(2) + 1 r(2)
I

[sin (2 - a) + ZJ(2) cos (2 - a)],

where

,(. 0(2)4-^1 + 6(2)]

f . r(2) -f s 2

^ ^^
i + 7?(2) + ^r(2)

Whence, upon recalling that a — /5 = — i, we see that whether we are dealing

with (114) or (115), the portions of the integral arising from the part CJ of C„

now under discussion will be of the form

1_ p/^Y+g/^)
dt r sin [(a + /3)2 - 2a]

dz
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."+(1/2) dt r (?2(z) sin [(a + ^)z - 2a]1 f7j8\''+(i/2) ^^ />

E'
^2

'^
2TriTTlJo \«/ a + jSJc^/ JS2

l_ /-Y/3y+a/2) ^^ /^ g4(2) cos [(g + ^)2 - 2a]

+ 27rJo UJ a + ^X/ ^^

where the functions ^1(2;), ^2(2), 93(2) and q^iz) (Hke the functions ^1(2), 2^2(2),

etc.) may be put into the forms 61/2^ 01/2^, di/z + 61/2^ and /1/2 + gi/z^ respec-

tively and where
E = cos (2 — a) + co(2) sin (z — a),

(129)
E = sin (z — a) + £0(2) cos (2 — a),

according as we are deahng with (114) or (115).

Considering first the portion of Cn consisting of one of the Hnes parallel to

the X axis, we readily obtain as in § 64 the fact that for all values of a, /3 and t

in (126) each of the integrals in (128) when extended over the line in question

approaches uniformly the limit zero as j = 00 . Thus we have merely to con-

sider (128) in which z = k -\- iy and CJ is understood to extend from y = — <x>

to 2/ = + °° along the line 2 = ^ + iy.

Now, from the manner in which k is to be chosen, we see from (129) that we

may take ^ = nr + a or ^' = mr/2 + a
;
(n = positive integer) according as we

are dealing with (114) or (115), In either case, equations (129) are such that

1 7,5
-^= 1 + -tanh y + -,
t," Z Z"

where y is independent of z while 5 depends upon z but has a modulus which for

all values of 2 under consideration is less than a certain quantity M.
Thus, (128) may be written in the form

({^+|)cos[(a + /3).-2a]|^,

+

+

where 62 has the properties mentioned above of 61
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Considering first the terms of (130) which have z- in their denominator, we

have but to refer to the discussion of similar terms in (89) in order to see that

for all values of a, /3 and t in (126) these terms have uniformly the limit zero when
^- = CO . The same is true also of the term

X\a) a + I3j_^z cosh2 y
^'

since we have cos tz = cos tk cosh ty — i sin tk sinh ty and we know that when

|/| < 1 (as is the case in (126)) the integrals

r" coshj^ r°°
I

sinh ty\

J_«, cosh^ y ^' Xoo cosh2 y ^

have a meaning.

Thus, (130) reduces to

.+(1/2) /-» / y \ sin fetm '£('*>"") dy
27r Jo \ «

/

J-oo \ ^ / i cosh- y

where e/ depends only upon a, jS and t and is finite for all values of these quan-

tities in (126) and where A(a, t, k) and also dA(a, t, k)/dt depends upon a, /3,

t and z but when considered for all values of a, /3 and t in (126) may be made

(uniformly) as small as we please in absolute value by taking k sufficiently large.

Upon placing z = k -{- iy and recalling the values which k may assume;

also placing for convenience a + /3 = 2 — r and dropping those integrals which

vanish identically since they are relative to odd functions of y, we thus obtain

(131) in the form

1 rf^y-^^"^hmkt^ r cosh ty,

2^1 [a) ~r"^U-«c^sh^^^

_yi r' f^Y^^"^^^lM n y tstnh y cosh ty

~
27r Jo U J t J_„ (F + f) cosh2 y

"^^

yi r' (^Y^^m p fctanhysinh/y^
+ 2^Jo Uj ^«^"J_„(F+F)icosh^/^

i- r /^V^^"'^sin^ r°° cosh(Q; + /3)y

^27r4_,U/ a + rJ-. cosh'y "^^

(132) r /^V^^"'^sin_fcr r°" y tanh y cosh [a + f>)y

L-.m) a^rL^k'^f cosh^?/
^^
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i_ r /A*""^''^ /Cos^j r°° fccosh (a + i5)y

27rJo(,_„)\Q;y q: + |8 J_«, (^- + ^z^) cosh^ ?/

the upper or lower sign being taken according as we are dealing with (114) or (115).

The expression (132) may, moreover, be used to determine the value of the

integrals (114) and (115) corresponding to the case a = I. In fact, when a = 1

and (3 and t are confined by (127) we readily see that each term of (132) con-

tinues to have a meaning.

From the properties already found of the integrals in (93) it now appears that

the second, third, fifth, sixth, seventh and eighth integrals of (132) when con-

sidered for all values of a, ^ and t in (126) or (127) have uniformly the limit

zero as ^* = °o , while if we treat the first integral as w^e treated the first integral

of (93), remembering here that lim (^(aY^^'^'^-^ = 1, we find that when k= ^ this

integral behaves precisely as the indicated integral of (93)

—

i. e., approaches the

limit i or — I according as ^ > or i < — 0.

Similarly, the integral

J_ r /^y+a/2)sin^T r°° cosh (a + /3)y

27ria-„)U/ a + ^ .L cosh^ 2/

^'

like the fourth integral of (93), has uniformly the limit zero if a' < a < h' while

if a; = 1 it has the limit ^.

Whence, if we are dealing with values of a, (3 and t satisfying (126), the ex-

pression (132) converges uniformly to the limit | or — | when k = <=o according

as ^ > or ^ < — 0, while if a = 1 and /3 and t have values consistent with

(127) the same expression has the limit or 1 according as we are dealing with

(114) or (115).

Thus, exception being made of the case h = in the integral (115), the inte-

grals (114) and (115) satisfy relation (I) of Theorem I, § 51 provided, however,

that t has only those values for which — a-\-^^t = l — a; ^ > 0. ]\Iore-

over, when a = 1, relation (1)6 of Theorem VI, § 55 is satisfied for the same

values of t and in this relation we have in the present instance G2 = or G2 = 1

according as we are dealing with (114) or (115).

Again, if ^ = in (115) the limit approached by this expression as k = <»

(a' <a< h') will be I + (a^-'+s _ ^2^+2) or - ^ + {0""+'- - (3'-"+-) according as

^ > or / < 0, it being understood as before that — q;+s=< = 1 — «•

Likewise, if a = 1, other conditions remaining the same, the limit approached
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by (115) as A: = 00 will be - 1 + {or'^^ - fi-''+^). In both the cases which thus

arise when ^ = we evidently meet with an application of the third general

remark of § 56 and we shall make this application presently.

Turning to the other relations of Theorems I and VI of §§ 51 and 55, we see

that in the present developments the function (p(n, a, t) is equal to

nQQ^ 1 ^"'+' r P'(az)Pm-P'mP(az)

in the case of (114) while for (115) the same function reduces to

or

1 /S^-'+i r P'((xz)P(l3z) - P{^z)P'{az)
,

(135) _ (2. + 2) ^^- + - ^-,
l^^ p-(.)^

d^'

according as h =|= or h = 0.

Now, for values of a, jS and t in (126) we may transform (133), (134) and

(135) by use of expressions (122), (123), (124) and (125) and thus we find that,

exception being made of the term — {2v + 2)^-"^^ in (135), these expressions

all reduce to the sum of the derivatives with respect to t of the expression (132).

From this it follows directly upon using the lemmas of the Appendix that the

above expressions satisfy relations II and III of Theorem I, § 51 ; also that

when a = 1 conditions (II) 6 and (111)6 of Theorem VI of § 55 are satisfied,

it being understood throughout as before that we are dealing only with values

of t such that — a+^^f^l — o;;^>0.

Moreover, if we affect each of the terms of (132) by the operation

1 n

-E,

understanding that absolute values are taken under the various integral signs,

it appears as in the study of (93) that when — a+^^i^l — a (^>0)
relation (II)' of § 52 is satisfied, as also (11)6' {h — 1) of § 55.

It remains, then, merely to consider the integrals (114) and (115) when t

takes values such that — a^t -^ — a-\- i, (^>0) and for this it becomes

necessary, as already noted, to use some other expressions for P{^z) and P'ifiz)

than (124) and (125), since /3 now takes values indefinitely near to zero.

Considering, then, that t = — a is one of the exceptional points of the type

mentioned in remark (1) of § 56 it will now suffice for the application of Theorems

I, II, VI and VIII of §§ 51-55 that such additional conditions be placed upon/(.T)

that when either of the expressions (133), (134) or (135) is multiplied by /(a + t)

the absolute value of the product, when considered for values of t such that
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— a ^ t ^ — a-\- ^ and for all values of n, may be made uniformly small with ^,

this being true when a' < a < b' and when a = 1.

Let us now divide Cn into two portions C„" and Cn" the first of these com-

prising that portion of the line z = k -{- iy for which \y\< t], where t) is an

arbitrarily small positive quantity and the second comprising all other portions

of Cn'.

As regards the expressions (133), (134) and (135) when the integration is

performed over Cn", we have but to make use of the well known formula

1 C
PJz) = T^ I sin-" (p cos (z cos (p)d(p; v > — h

to see that when |jS|< ^ the same expressions (C„' now replaced by Cn") are

each of the form (3^'"^^G{a, /3, n, ^, 77) where G{a, /3, n, ^, i)) is less in absolute

value than a constant independent of a, (3 and n.

In order to study the same expressions when the integration is performed over

Cn" we first make the following observations:

Let us write (120) in the form
/ 2.+ 1 \

\7r 2"+(i/2)(136) P,{z) = ^J- .+(1/2) '^(^' ^)^

so that

/ 2?/ + 1 \
A{z, v) = {1 + e(s, v)] + r(2, v) tan Is ^

—

tt I.

For all values of z (real part > 0) lying upon Cn" and of modulus greater

than some fixed value zo > we see that A{z, v) remains less in absolute value

than a constant Mx. Moreover, li v {v ^ neg. integer) has any value except

one of the form |(1 d= 4w); n = Q, 1, 2, 3, • • •, the same expression when con-

sidered for values of z (real or complex) as near to zero as we please remains

less in absolute value than a constant il/2 provided v ^\. In fact, it appears

from (136) that as z = 0, A{z, v) will tend to zero like 2"+^^^-^ since from (104) we

have

lim P^z) =
o.-p/.. I IN ; p > - I.

z=0 2T(j/ + 1)
'

Whence, if p has any value = — 2 except one of the form |(4?i -\- 1); n = 0,

1, 2, • • •, we may write for all values of z upon Cn"'

( 21/ +1 \
cos Is T TV

J

PM =
^H^iT^)

B{z, p),

where B(z, p) remains less in absolute value than a constant (independent of z).
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Similarly, if v has any value > — | except one of the form §(4w — 1) ; n = 0,

1, 2, • • •, we may write for all values of ^ upon C„"'

sin
/ 2.+ 1 \

where B{z, v) has the properties just mentioned.

It follows that for all values of z (real part > 0) upon C,/" and for all values

however small of the positive quantity j8 we may write, provided v ^ — ^

cosi^^-H^^)
(137) P.,(/3^) = (^^).+(i/o) B(^z, p)

or

sm
/ 2.+ 1 \[^z-^^.j

(138) P.m =
(^zy+ai2) -^i^^' ^)'

where for the indicated values of z and /3 the expression B(^z, p) remains less

in absolute value than a constant independent of both j3 and z and where the

first form can be used in all cases except when p = ^(4?i + 1); ?i = 0, 1, 2, • • •,

while the second form can be used in all cases except when p = ^(4/1 — 1);

n=0, 1, 2, •...

By means of the relation

we now obtain, as formulae corresponding to (137) and (138),

sin (r
2.+ 1 \

I\'m = ^.-(l/2),.+ (l/2)
B{^Z, P),

(139)

(r 2v+1 \
cos \pz J

—

''^
I

Pv (P2) = oi'-(l/2)2"'+(l/2) -o(p2, V),

where B{^z, p) has the properties given in connection with (137) and (138) and

where the first or else the second formula (and in general both) can be used for

any given value of i' ^ — |.

Now, if we use in (133), (134) and (135) the forms (137), (138) and (139)

(thus confining ourselves to an integration over Cn") we find as before that

by taking j = oo the complex integrals become simply those arising when, in-

stead of Cn" , we take as path of integration the line z= k -\- iy, it being under-

stood that the integration now consists of that from y = — ^ to y = — t]
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together with that from y = rj to y = go . This statement, as in the former case,

is seen to be true either when a' < a < b' or a = 1. The resulting complex

integrals thus take a form analogous to (132) involving real integrals of the form

where the expressions (pi{y), <P2(y) and (psiy) are functions of k, a, j8 and y in

each of which the numerator contains, besides factors whose modulus is always

less than a constant, terms in each of which appears one of the factors sinh ay,

cosh ay while the denominator contains cosh^ y. Thus the integrals in question

(aside from the factor |g->'-('/2) appearing on the outside) are always less in absolute

value than a constant independent of a, /3 and k, it being understood throughout

that a' < a < b' or a = 1 and 1/5 1 < ^.

Thus the expressions (104), (105) and (106) when considered for values of jS

such that |i3| < ^ are of the form jS"-^^"^^ H(a, j(5, n) where H(a, /5, n) is less in

absolute value than a constant independent of a, fi and n.

It follows therefore (considering the forms which we have now obtained for

the expressions (133), (134) and (135) when the indicated integration is performed

either over Cn" or Cn") that we shall be able to apply Theorems I, II, VI and

VIII of §§ 51-55 to the present developments if we demand (in addition to

the conditions placed upon /(a-) in the same theorems) that the function /(/S)/?""*""'^^

be integrable in the neighborhood at the right of the point /? = 0, it being under-

stood also that v > — ^. In other words, we need merely make the additional

demand that x'''^^^''^^f(x) be integrable in the neighborhood at the right of the

point a; = 0.

Upon applying Theorems I, II, VI and VII of §§ 51-55 and remarks (1)

and (3) of § 56 we thus arrive in summary at the following result:

" If f(x) remains finite throughout the interval (0, 1) with the possible ex-

ception of a finite number of points and is such that the integrals

(140) I .r""^'-''"^ \f(x)
I

dx, I |/(a-)
I

dx, e arbitrarily small and positive,
Jo J e

exist and if P^s;) be the function defined for all values of z and for f > — 1 by

the equation (104), then each of the three series:

00

(2. + 2) r x'^+%v)dx + IlqnT^iK'x),
Jf n= \
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n=l

in which X„, X„' and X„" represent respectively the nth positive roots of the

equations

P,(2) = 0, P/(2) = 0, zP/(s) - hPM = 0; h = constant +

and in which

qn' = p^2J x'^+'f{x)PX\n'x)dx,

will converge provided i; ^ — ^ at any point x (0 < .r < 1) in the arbitrarily

small neighborhood of which f{x) has limited total fluctuation, and the sum

will be

H/(-^--0)+/(.r + 0)].

IVIoreover, the convergence will be uniform to the limit j{x) throughout any

interval {a', h') enclosed within a second interval (ai, 6i) such that < Oi < a'

< // < 6i < 1 provided /(.r) is continuous throughout {a', h') inclusive of the

end points x = a', x = h' and has limited total fluctuation throughout (ai, hi).

Also, if f{x) remains finite throughout the interval (0, 1) with the possible

exception of a finite number of points and is such that the integrals (140) exist,

then each of the three series above {v ^ — ^ )will be summable (r = 1) at any

point .T (0 < ar < 1) at which the limits /(.r — 0), j{x + 0) exist and the sum

will be
i[/(.i--0)+/Gr + 0)].

Moreover, the summability will be uniform to the limit /(.r) throughout any

interval (a', h') such that < a' < 6' < 1 provided that at all points within

(a', h') inclusive of the end points x = a', x = b' the function /(a-) is continuous.

Under the same conditions for f(x) when considered throughout the ivhole

interval (0, 1) the three series (i/ ^ — |), when considered for the value x = 1,

will converge to the respective limits 0, /(I — 0) and /(I — 0) provided that

f(x) is of limited total fluctuation in the neighborhood at the left of the point

x= 1.

The same series when considered for the value .t = 1 will be summable to the

respective limits 0, /(I — 0) and /(I — 0) whenever /(I — 0) exists."

67. If we now introduce Bessel functions into this result through the relation
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Py(z) = z~''J^(z) and then apply the theorem to the function x'^ix) instead of

f(x) we obtain the following:

Theorem. If f(x) remams finite throughout the interval (0, 1) with the possible

exception of a finite numher of points and is such that the integrals

(141) I x^\f{x)\dx,
I

\f{x)\dx; e = arbitrarily small positive constant
Jo Je

exist and if J^{z) be Bessel's function of the first kind of order v then each of the

three series

2gn/v(Xn.X-),

(2^ + 2) r x'^+'f{x)dx + flqn'J.iK'x),

00

Y.qn"JX^n"x),

in which \n, X^' a7id X,/' represent respectively the nth positive roots of the equations

JM = 0,

^ (S-'J.CZ)) = 2j;(2) - vJ^iz) = 0,

zJJ{z) — (h + v)J^{z) = 0, h = constant =f= 0,

and in which

2 r^
qn = J ,/^ N2 I

xf{x)J^{\nX)dx,

qn ^^ ~T /-v /\2 I •V C*^/" vvXn XjuX,

qn" =
2\n"'

{h{2p-\-h)+Xn"V.0^n')
—

J^
xfix)J^(Kn"x)d:i

will converge provided v > — ^ at any point x {0 < x < 1) in the arbitrarily small

neighborhood of which f{x) has limited total fluctuation, and the sum will be

|[/(^-0)+/(.r + 0)].

Moreover, the convergence will be uniform to the limit f(x) throughout any interval

(a', 6') enclosed within a second interval (ai, bi) such that < ai < a' < b' < bi < I

provided f(x) is continuous throughout {a', b') inclusive of the end points x = a',

x = b' and has limited total fluctuation throughout (ai, by).

Also, if f{x) remains finite throughout the interval (0, 1) loith the possible ex-

ception of a finite number of points and is such that the integrals (141) exist, then

12
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each of the three series above (v > — ^) will be summable (r = 1) at any point x

(0 < .T < 1) at lohich the limits f{x — 0),f(x + 0) exist and the sum will be

H/G-^ -0) +/(.!• + 0)].

Moreover, the siimmability will be uniform (§ 45) to the limit f{x) throughout

any interval (a', b') such that < a' < 6' < 1 'provided that at all points ivithin

(a', b') inclusive of the end points x = a', x = b' the function f{x) is continuous.

Under the same conditions for f(x) when considered throughout the whole interval

{0, 1), the three series, ichen considered for the value x = 1 will converge to the

respective limits 0, /(I — 0) and /(I — 0) provided that f(x) is of limited total

fluctuation in the neighborhood at the left of the point x = 1.

The same series ichen considered for the value a; = 1 loill be summable (r = 1)

to the respective limits 0, /(I — 0) and /(I — 0) wheriever /(I — 0) exists, it being

always assumed that the integrals (141) exist?'^

3. The Developments in Terms of Legendre Functions.

68. We proceed to consider the well known development

(142)

»
2n-\- 1 r^

fix) = zlqnXnix); qn = ''~^— f{x)Xn{x)dx,

in which Xn{x) represents the polynomial of Legendre (Zonal Harmonic) of order

n. In the notation of § 60 we here have a development of the form (54) in which

H{z, x) = A''z(.t), a = — l,b = 1 and in which equation (53) becomes

a^|(i-^-^>l^| + * + i)-^' = °-

Moreover, since z is to take only integral values, the equation u{z) = must

22 It may be noted that oiu* results, in so far as they concern convergence at a special point

a; (0 < X < 1), are not in entire accord with those of Dini ("Serie di Fourier," pp. 2G6-269).

In fact, instead of the existence of the first of the integrals (141) Dini requires that |/(a;)|.r''+a~P,

where p is the greater of the two numbers v, \, shall be integrable in the neighborhood at the right

of the point x = 0. This discrepancy is due chiefly to a slight error occurring in formula (95),

p. 237 of DiNi's work, the last term of which should contain under the integral sign e^'^r^""!""

instead of e~''T''~i~'», as appears from the analysis on p. 237. If this formula (95) be altered

as just indicated and resulting changes be made on pp. 242, 243, 265-269, we are led to the above

theorem. This same theorem, so far as it concerns convergence, is in accord with the results

published in recent years by Hobson {Proc. London Math. Soc, Vol. 7 (1908), pp. 359-388),

while, as regards summabihty, the theorem is in accord with the results of C. N. Moore {Trans.

Am. Math. Soc, Vol. 10 (1909), p. 428).

It may also be remarked at this point that, except in the study of uniform convergence,

the results published of late years by Hobson and others respecting the convergence of Fourier

series and other developments in terms of special normal functions were originally obtained

rigorously for the first time by Dini—a fact apparently not well imderstood. See, however

NiELSON, "Handbuch der Theorie der Cylindcrfunktionen," p. 353.
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here be regarded as given in advance and may be taken for example as

u(z) = sin TTZ = 0.

Furthermore, we have in the present instance K(x) = 1 — x^ so that equations

(60) become satisfied identically by taking h' = 0, h = 0. However, since

K(zL 1) = it follows that the general formulae of § 61 for the determination

of the integral (36) corresponding to the present development cannot be used.

It becomes necessary, therefore, in order to ascertain whether this integral satis-

fies the conditions of the fundamental Theorem I, §51, to proceed independently

of such formulae.

Now, the integral (36) here becomes

(143) <p{n, a, t)dt = ^ E (2w + l)X„(a) Xn{a + t)dt,
Jo n=0 Jo

and hence also

(144) <p{n, cx,t) = hll {2n + l)Xnia)Xnia + t).
11-0

We proceed to show that the three relations of the general Theorem I of § 51

are satisfied in the present instance, it being understood that we here have

a= - 1, 6 = 1.

The values of a and t with which we are concerned are such that

- 1< a' ^ a ^ h' < 1,

We may therefore place a = cos 6' , a -{- t = cos d in which case we have, as is

well known,^^

(145) X„(cos ^)X„(cos 6') =—
j X„(cos y)d(p,

where cos y = cos 6 cos 6' + sin 6 sin 6' cos (cp — (p'), it being understood that

(6, (p) and {6', tp') thus represent the polar spherical coordinates of two points

M, M' on the unit sphere, while y represents the spherical distance between the

same points.

Thus we may write

I
(pi^n, a, t)dl = — J- E (2w + 1) I sin Odd I A'„(cos y)d<p

Jo ^TT ,j=o J9' *'o

or, since

(146) t (2n + l)X.(cos 7) = - ' •- - I "^r + "F^ I

'

«^ sni 7 [ rty dy
]

" Cf. for example, Todhunteu's "Treatise on Laplace's Functions, Lam6's Functions, etc."

(London, 1875), § 170.
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we have

(147) f .(. ., 0.< = fj'sin Mef
jf +^^

I
,^.

Whence, if we denote by da the element of spherical surface and observe that

do is negative when t is positive (i. e., when 6 < 6'), while c?0 is positive when t is

negative, we may write

(US) f.(.«,0.= .,^//|f + ^j^^,,
in which the upper or lower sign is to be taken according as t is positive or nega-

tive and where it is understood that the integration is extended over the zone

Ijdng between the parallels 6=6' and 6=6.
Let us now choose a new coordinate system (7, \p) such that the fixed point

M' = (6', (p') becomes the point 7 = 0, while the great circle through M' tangent

to the circle 6=6' determines the points for which x{/ = 0, Then da = sin ydydrf/

so that if we represent by yi{6') the value of 7 pertaining to the point upon

the circle 6=6' having the (variable) coordinate 1/' and agree to place for con-

venience 7„(cos 7) = Z„(cos 7) + A''„+i(cos 7), we may put the equation (148)

into the form

J ^{n, a, t)dt = T^J [F„(cos 7)]^4V# ± Ut),''

in which .9
= 0, h = ir or g = ir, h = 2it according as a ^ or a < (0' ^ 7r/2

or 6' > 7r/2) and in which In{t) is defined in one of two ways as follows:

(a) li6 <6' ovd^-K- 6',

(149) Ut) = l;,£ \ ^n{co^ 7)]r=%

A

in which c and tt — c represent the two values of ;/' determined by the planes of

the two great circles through the point 7=0 tangent to the circle 6=6 and in

which 72 (^) and yz{6) represent the two values of 7 pertaining to the points upon

the circle 6=6 having the common coordinate yp.

(6) li6' <6 K-K- 6',

(150) hit) = ^f' Ynicos yz{6))dyp,

in which yz{6) represents the value of 7 pertaining to the point upon the circle

6=6 having the coordinate i/'.

Upon writing

[7„(C0S 7)]^'=i''o^ + [YnicOS 7)];=o - [Fn(C0S 7)]v=v.(«')

^ We here employ the common notation [f{x)Y'z=a = f{b) — f{a).
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and observing that F„(cos 0) = 2, F„(cos tt) = 0, we thus obtain

(151) r ip{:n, a, t)dt = ± i =F^ J
Fn(cos 7i(^'))# ± hit).

In order to show that relation (I) of § 51 is satisfied it therefore suffices to

show that for all values of a and t such that

(152) ^ . ^ .

(6 > 0)

the last two terms of (151) converge (n = oo) uniformly to zero. In doing this

we shall make use of the following two fundamental results respecting 7„(cos 7):

(A) For values of 7 in any interval such that 0<^^7^7r— ^<7r the

expression yn(cos 7) converges (n = co) uniformly to zero.

(B) For all values of n we have uniformly hm F„(cos 7) = — i. e., corre-

sponding to an arbitrarily small positive quantity <j, one may determine a second

positive quantity f independent of n and such that
]
F„(cos 7) |

< o- when

TT — f = 7 = TT.

The proof of {A) follows directly from the well-known fact^^ that X„(cos 7)

satisfies the indicated relation, w^hile the proof of {B) may be supplied as follows

:

From the formula^^

X.,

we have

1 r^
„(x) = -

I
[x -\- ^x^ — 1 cos (pYdip; — 1 ^ a: ^ 1

TT Jo

Y^{x) = - r [1 + .T + V.i-'- - 1 cos <p\[x + V.r' - 1 cos ipYd<p.

Whence,

\Yn{x)\^- r
1
1 + .T + V.r- - 1 COS <p\d<p^ |1 + .t|+V1 - x\

TT Jo

so that for all values of n we have uniformly

lim Yn{x) = or Hm Fn(cos 7) = 0.
a:=— 1+0 y=;r—

Results (A) and (B) being premised, we now turn to the second term appearing

on the right in (151) (which term, except for the sign T, is independent of t,

but depends upon a). Let us first confine ourselves to values of a which are

positive (0 < a: < 6') . For such a value of a the term in question has the form

1 f- I F„(cos yy)d\l/; 71 = 7i(^')-

25 Cf. for example, Fej£r, Math. Annalen, Vol. 67 (1909), p. 103.

2^ Cf. for example, Byerly's "Fourier Series, etc.," p. 166.



166 SUMMABILITY OF FoURIEE SeEIES .\ND AlLIED DEVELOPMENTS

Omitting the factor =F l/47r, let us write this in the form

F„(cosTi)#+ F„(cos7i)#+ yn(cosTi)#

+ I y„(cos 7i)# + I Fn(cos 7l)#,

where t; is an arbitrarily chosen, small, positive quantity.

Since
|
y„(cos 71) |

^ 2 whatever the values of n and 71, the first, third and

last terms here appearing maj^ be made arbitrarily small in absolute value with a

proper choice of 77, this being true not only for special values of n and a, but uni-

formly for all values of a such as we are considering and for all values of n. After

7] has once been chosen, the values of 71 which enter into the second and fourth

terms under the sign of integration are seen (upon reference to the unit sphere)

to always be such that < 771 ^ 71 ^ tt — 771 < tt where 771 depends only

upon 77. From result (A) it follows that the same terms approach uniformly

(0 < a < b') the limit zero as ?i = co

.

Thus the second term of (151) comes to have the properties desired.

We proceed to examine the properties of the last term in (151)

—

i. e., of the

expression In{t)- Since t is confined by relations (152), the angle d never approaches

(as t varies) nearer to 6' (regarded as fixed with a) than some positive quantity k

which, if taken small enough, will be independent of both a and t. With k thus

chosen, it now suflSces to show that for all circles 6 such that either < 6 < 6' — k

or 6' -\- K < 6 < T the expression In(t) converges (n = <x>) uniformly to zero.

In showing this we shall find it convenient to divide these circles into three

classes as follows

:

(a) < d < 6' - K,

(6) 6' + K< e <7r- 6',

(c) IT - d' < 6 Kir.

Also, we shall assume for the present (as above) that B' < 7r/2 (a > 0).

First, for the circles (a) we have In{i) defined by (149) in which 72(^) and

yz{d) are such that k ^ 72 ^ 7r/2, /c ^ 73 ^ 20' — k < tt, while c lies between

fixed limits dependent only upon e (as again appears after noting the significance

of the various letters upon the unit sphere). Wlience, by result (A) we reach the

desired result for the circles (a).

As regards the circles (6), let us divide these into two sub-classes as follows:

(by Tr-e'-v<0<Tr-d',

(6)" d' + K < d < T - 6' - V,

where 77 represents an arbitrarily small positive quantity.
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For the circles (6)' we have In(t) defined by (150), which may be written in

the form

(154) i
J""""

F„(cos y3)drP + £ f^
'^

F„(cos 73)^,

where co represents an arbitrarily small positive quantity. Now, by choosing 77

and o) each sufficiently small, all the values of 73 entering into the first term of

(154) may be brought as near as we please to tt, so that in view of result (B),

we conclude that the first term of (154) may be made arbitrarily small in absolute

value by taking rj and co sufficiently small and that this is true uniformly for all

values of n. With 77 and co once fixed, we now observe that the values of 73

entering into the second term of (154), when considered for the circles (6)', never

approach nearer to tt than a fixed value independent of 6, while the same values

of 73 remain different by as much as k from 0. Hence, for reasons already stated

in connection with the circles (a), the second term of (154), when considered for

the circles (b)' approaches uniformly the limit 0.

With 7) fixed as above, let us now consider the circles (b)". Here again we

have the form (150) for In(f), but the values of 73 never approach nearer to tt

than a certain positive value independent of 6, nor nearer to zero than k, so

that as before we see that uniform convergence is present. In summary, the

expression In{t) has the desired properties for all the circles (6).

W^e turn lastly to the circles (c). Let us divide these into two sub-classes as

follows

:

(c)' T- d' <d^Tr- 6'
-i- fji,

(c)" Tr-e' + ix^d<ir,

where n represents an arbitrarily small positive constant. For the circles (c)'

we have In{t) defined by (149) and by taking /z sufficiently small the values of 73

pertaining to these circles (c)' may be made to differ by as little as we please

from TT. At the same time, however small fx be taken, we have 72 ^ k > 0.

Whence, using result (J5), we see as before that if v be any preassigned arbi-

trarily small positive quantity, we may take ju so small that for all the circles

(c)' we shall have uniformly
|
In(t)

|
< v. With fx thus chosen, let us consider the

resulting circles (c)". Here again we are to use the form (149), but the values

of 72 and 73 which enter lie between assignable limits m, n such that m > 0,

n < TT (m = K, n = IT — n). Hence, for the circles (c)" the expression 7„(0

has the desired properties, and in summary we may say that the same is true for

all the circles (c).

Thus, relation (I) of § 51 becomes satisfied for all values of a within the

interval ^ a ^ b' < 1. That it is satisfied also when — l<a'^a;^0
may now be inferred as follows:
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In the present development we have ip{n, a, t) = <p(n, — a, — t) and hence

(155) I (p{n, a, t)dt = I (p{?i, — a, — t)dt = — I (p{n, — a, t)dt.

Jo Jo Jil

If a be such that a' ^ a ^ it follows from what we have already shown that

the last member of (155) will converge to the limit ^ or — | according as — 1 + «

^ — t^ — eoT€^ — t^l-\-a, and that for all such values of a and t the

convergence will be uniform. This is, however, the same as saying that for

a' ^ a ^ and — 1 — a^t^ — e or e^t^l — a the first member of (155)

shall have the properties desired.

That relation (II) of § 51 is also satisfied in the present developments follows

from (151) together with (150). Thus, for all values of a in (152) and for all

values of t such that — € = i = e we have

I

f\(n. a, t)dt

I

g i + 1 J'
2# + l[' 2# = 2.

With regard to relation (III) of § 51, we note that the function (p{n, a, t)

of the present development is given by (144). Now, availing ourselves of the

formula

9 2^ (2n + l)Xn{x')Xn{x) = —^ ''rir:^

and of the fact that for large values of ii the function A''n(cos 6) is of the form^^

(—^y^(n, 0); \A{n,d)\< 1

provided 6 lies in any interval of the form 0< ^ ^ d ^ ir — ^;^ >0, it appears

that (III) is here satisfied for all values of a and t such that — 1 < a' ^ a ^ b'

<1 and -l-a+^^^^-e, e^t^l - a- ^ (^>0). Whether the

same is also true (as desired by (III)) when t lies in the intervals — 1 — a ^ t

^ — 1 — a -\- ^ or 1 — a— ^^^^1 — a remains in doubt, thus leading

eventually to an application of remark (1) of § 56. Due account of this ex-

ceptional character will be taken before the final summary of our results into a

theorem.

We turn to the consideration of (143) when a = d= 1. First, if a: = 1 we

have

(156)

f cp{n, 1, t)dt = i E (2n + 1) f Xn{l + t)dt
Jo n=0 Jo

= - I Z) 1 A"„(cos 6) sin ddd
n=0 Jo

" Cf. Fej£r, I. c, p. 103.
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and we shall now show that for values of t such that — 2 + e ^ ^ ^ — e; i. e.,

of 6 such that OK'n'^B'^ir— r}{r] arbitrarily small but > 0) the last member

of (156) converges (uniformly) to the value — 1 when n = co, thus satisfying

relation (I) 6 of § 55 {Gi = 1) when exception is there made of the value t = — 2

(d = tt).

In fact, when a = 1 we have 6' = 0, so that in using (147) we have y = 6

while (p becomes independent of 6. Thus we may write

r' r^ d
cp{n, 1, t)dt = i -y^[X„(cos d) + Xn+i(cos e)]dd

(157) •^0 '^y ^^

= i[^n(C0S 6) + X„+i(C0S e)]l = - 1 + ^rn(C0S d)

.

The indicated statement thus follows upon noting the properties already men-

tioned of F„(cos 6) when 0<r]^d^Tr— r] (77 >0).

Again, if a = — 1 we may write

I (p{n, - 1, t)dt = - ^ Z (2w + 1)(- 1)" I A^„(cos 6) sin ddd

= -|Z(2n+l) f Z„{cos(7r-0)}

= -I f F/{cos (tt- e)]de

= - UYnicOS {it - e)]]l^^ = 1 - |7n{cOS (tT - 6)],

from which it appears that for values of 6 such that rj ^ 6 '^ tt — r] (rj > 0)

i. e., of t such that e ^ t ^ 2 — e, the first member of (158) converges uniformly

(n = <x>) to the limit + 1, thus satisfying relation (!)„ of § 55 (6^1 = 1) when

exception is there made of the value t = 2 (6 = 0).

Relations (II)a and (11)6 of § 55 are evidently satisfied as a result of (157)

and (158), but relations (Ill)a and (111)6 are not satisfied. For example, we

have

<pin, 1, /) = ^ E {2n + 1)X„(1 + = I E (2« + l)X„(cos d)

n=0 n=0

and as n increases indefinitely the right member here appearing becomes an

oscillatory divergent series whatever the value of d.^^ We are here led, there-

fore, not to an application of remark (1) of § 5G, but rather to an entire recon-

sideration of the reasoning by which Theorems (V) and (VI) of § 55 were estab-

lished. In this way we may supply conditions for /(.r) which, notwithstanding

the present exceptional character of <pin, 1, t), will insure the convergence of the

series (142) when x is equal to either 1 or — 1.

28 Cf. Fej^r, I. c, p. 106.
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Thus, if 5„(1) represents the sum of the first (/i + 1) terms of the series (142)

when X = 1, we may write

(159) Snil) = J /(I + t) ^(n, 1, i)dt + j /(I + t)<p{n, I, t)dt; e > 0.

Since, as already shown, relations (!)& and (II) & are satisfied, it follows (of.

(25)) that the first term here appearing on the right approaches the limit /(I + 0)

provided only that the integral

""
\Kx)\dx

exists and that f{x) has limited total fluctuation in the neighborhood at the left

of the point x = 1. It remains, therefore, but to impose such further conditions

upon /(.r) that the last term of (159) shall approach the limit zero as n = co,

and we shall now show that this will be the case whenever f{x) is of limited total

fluctuation throughout the whole interval (— 1, 1).

First, let us consider the integral

(160) r
'

/(I + t)cp{n, 1, t)dL
«/-2+e

Considering that n has any fixed value (positive integral), let us divide the

interval (— 2 + e, — e) into a certain number m of parts such that in each the

function (p{n, 1, t) does not change sign. Let pi, jp2, •'-, Vm-\ be the corre-

sponding points of division. We may then write

r' /(I + t)^{n, 1, t)dt = f f + f" + • • • + r ) /(I + t)<p{n, 1, t)dt

= /i <pdt-\-f2 <pdt+ h/m-i <pdt+fm I cpdt,

where (p = <p{n, 1, /) and /i, fo, fz, • • -
, fm are certain values lying between the

upper and lower limits of /(I + when considered within the intervals

(-2+6, pi), (pi, IH), •'•, (Pm-2, Pm-l), (Vm-l, — i)

respectively. Whence, if we let di, 6-2, • • • , 6^-1, 6m be the values of

(IGl)
I

ip{n, 1, t)dt
J_2+€

at the points t = iH, t = jh, • • •, t = Vm respectively, we may write

L /(I + t)<p{n, 1, t)dt = e,Ui - h) + Wi - /a) + • •
•

E

+ ^m—i(/to— 1 ~ Jm) + Qmjm'
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Since, as already shown, the integral (157) when considered for values of t

in the interval — 2 -\- e^t^ — e converges uniformly (n = oo ) to the limit

— 1, it follows that the integral (160), when considered for the same values of t,

converges uniformly to the limit zero. Whence, if a be a preassigned arbitrarily

small positive quantity we shall have, at least if n be chosen sufficiently large,

I
^1 1
< 0",

I
^2 1 < 0-, • • •

, \dm\< cr. Whence, also, if X represents the upper limit

of /(I + t) between ^ = - 2 + e and ^ = - €, and if £>« represents the fluctu-

ation of /(I + t) in the interval ih < t < p^+i, the last equation enables us to

write

I r~^ / "*"' \
/(I + t)^{7l, 1, t)dt < C7 X + E £>. ,

I «^-2+e \ s=l /

from which the indicated result concerning the last term of (159) becomes evident.

Similarly, when x = — I we may obtain the corresponding result so that the

discussion of the convergence of the series (142) may now be readily completed,

both for the case of a point x such that — 1 < .r < 1 and for the end points

X = ±1, except that, following remark (1) of § 56, it remains to consider the

integrals

f{(x^-t)<p{n,a,t)dt, / fia+t)<p{n,a,t)dt,

(162)

£^ 7(1 + t)cp(n, 1, t)dt, J /(- 1 + t)cpin, - 1, t)dt.

In order to complete the discussion it thus suffices to show that, at least if ^ be
taken sufficiently small, each of these integrals remains less in absolute value than
any preassigned positive quantity o; provided n be greater than some fixed

quantity N. Moreover, in the case of the first two integrals, this property should

be true uniformly for all values of a such that — I < a' ^a^h' < l—i.e.,
the determination of N should not depend upon a.

Taking the first of the integrals (162), let us now suppose that /(.r) is of

limited total fluctuation in the neighborhood at the right of the point a- = — 1

and hence that/(a;H-0 has the same property at the right of the point t= — l— a.

Then, since we have already shown that the integral (143) converges {n = oo)

to the limit — ^ and that the convergence is uniform for all values of a and t

such that -l<a'^a^6'<l; - \ - a ^t ^ - e,\t follows that we may
treat the first of the integrals (162) in the same manner as we treated the

integral (160), thus showing that however small the choice of the positive

quantity a, we may determine a value N (dependent only on a) such that

/(a + t)<p{n, a, t)dt
,

< <t X' + Z D/
) ,
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where X' is the upper Hmit of/(a + t) in the interval — 1 — a < t < — 1 — a-\- ^

and where
TO—

1

HBs'

represents the sum of the oscillations of /(a + t) corresponding to a certain

division of the same interval— a sum which by hypothesis is less than a constant.

Similarly, the second of the integrals (162) is found to have the properties

desired.

As regards the third integral, the method just employed cannot here be used

because we have not investigated the convergence of the integral (157) when
— 2^^^ — 2+^. We may, however, show as follows that if f{x) is assumed

to be of limited total fluctuation in the neighborhood at the right of the point

a: = — 1 (as already implied in the conditions which we have placed upon f{x)

in order that relation (Ill)b be satisfied) then the third integral of (162) has

the properties desired. In fact, following again remark (1) of § 56, we may
then show that the integral in question may be made less in absolute value than

any preassigned positive quantity by taking ^ sufficiently small, this being true

uniformly for all values of n sufficiently large. To see this, if we let the accent

denote differentiation with respect to 6, we have from (157)

(163) I /(I + t)ip{n, 1, t)dt = -h \ /(cos 0)F(cos e)dd,
»/—

2

''it—I)

where 77 depends only upon ^ and vanishes when ^ = 0. Since f{x) has been

assumed to be of limited total fluctuation in the neighborhood at the right of the

point X = — \, the same function is either monotone in this interval or consists

of the sum of a finite number of such functions.^^ Evidently, then, without loss

of generality we may assume in the study of (163) that /(cos 6) is monotone in

the interval tt — 77 < < tt.

This being the case, let us apply the second law of the mean for integrals to

the second member of (163). We obtain

r ""
/(I

+

t)<p{n, 1, t)dt = - i/(-
1 + ^) r "'

iv(cos e)dd

- Ui- 1 + 0) r Fn'(C0S d)dd,

which, upon recalling that 7„(cos tt) = 0, reduces to

- I (/(- 1 + ^) - /(- 1 + 0) } F„(cos (tt - 77O) + i/(- 1 + ^) F„(cos (tt - 77)),

and of the two terms here appearing, the first, upon recalling that

I

7n(c0S (tt - 771))
I

^ 2,
23 Cf. §46, p. 110.
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may be made arbitrarily small in absolute value by choosing ^ sufficiently small,

while the second (^ having been fixed) vanishes as n = co, it being observed

here that rj does not depend upon n, so that we are dealing with the expression

Ynicos 6), wherein 6 has a fixed value such that < ^ < tt.

Similarly, it appears that the last of the integrals (162) has the properties

desired in case f(x) is assumed to be of limited total fluctuation in the neighbor-

hood at the right of the point x = 1.

In summary, then, we reach the following theorem respecting the convergence

of the series (142)

:

Theorem I. // the function f(x) of the real variable x satisfies the following

three conditions:

(a) remains finite throughout the interval (— 1, 1) with the possible exception of

a finite number of points
;

(6) is such that the integral

jy{x)\dx

exists',

(c) is of limited total fluctuation in an arbitrarily small neighborhood at the

right of the point x = — 1 and in a similar neighborhood at the left of the point

X = \, then the series

(164)

<»
2?i + 1 r^

Y^qnXn{x)', qn = Ty I f{x)Xn{x)dx,
n=0 " J—

I

in which Xn{x) represents the polynomial of Legendre {Zonal Harmonic) of order n,

will converge at any point x (— \ < x < 1) in the arbitrarily small neighborhood

of which f{x) has limited total fluctuation, and the sum will be

H/G'^-o)+/(.T + o)].

Moreover, the convergence will be uniform (§ 45) to the limit f{x) throughout any

interval (a', b') enclosed within a second interval (ai, bi) such that — 1 < ai < a'

< b' < bi < 1 provided that f(x) is continuous throughout {a', b') inclusive of its

end points and has limited total fluctuation throughout (ai, bi).

Also, if we replace conditions (a), (b) and (c) by the single more restrictive con-

dition; viz., that f{x) be of limited total fluctuation throughout the lohole interval

(— 1, 1) then the same series will converge when x= — lorx=l and the respec-

tive sums will &e/(- 1 + 0), /(I - 0).^*^

'" The results contained in this theorem, both for the case of an internal point (— 1 < x < 1)

and for that of the end points x = =b 1, appear to have been first established rigorouslj^ by Hobson
{Proc. London Math. Sac, Vol. G (1908), p. 395. Ihid., Vol. 7 (1909), p. 39). Dini's consideration

of the problem ("Serie di Fourier, etc.," pp. 278-282), although outlining all the essential steps

of the required analysis, is but fragmentary, especially that which concerns the end points. In

Hobson's second paper, just noted, less stringent conditions for f{x) are obtained than those

of the Theorem above, the same resulting from an extended critical study of the behavior of

Xn{x), (— 1 ^ x ^ 1) for large values of n {I. c, pp. 25-30).
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69. We proceed to consider the siimmability (r = 1) of the series (142) and

in so doing we shall make use of the following well known result :^^

" If we place

(165) sniy) = fl{2n+ l)Z„(cos 7)

and

(166) sn'iy) = ^-^-^ My) + s,iy) + • • • + ^^(7)]

then for large values of 71 we have

(167) 5„'(7)=i

7
4 cos —

r ' ^ ro • \^ L\ 2/ ' 4 I

Vtt sin — (2 sin 7)^
-"

[{-!)COS n + - 7- -J- + dn'{y)
_57r']

where lim 5„'(7) = uniformly for all e ^ 7 ^ tt — € (e > 0)."
71=00

It will thus appear that although the summability (r = 1) of (142) at an

internal point (— 1 < x < 1) cannot be assured under conditions so slightly

limitive as those met with in the corresponding studies of Fourier series (§ 46)

or the Bessel expansions (§ 67), nor indeed under restrictions upon f{x) which

are any less than those stated in Theorem I for convergence (r = 0) at such a

point, yet at the end points a; = ± 1 the conditions for summability may be

stated in a less restrictive form than the corresponding ones in Theorem I.

We begin by noting that, as a result of (144) and (145), the function $(«, n, t)

corresponding to the present development is such that

where

$(n, a, t) =
^^-qj^

[<p{n, a, t) + <pin - l,a,t) + • + (p(0, a, f)],

(p(n, a,t)=j-\ 2 {2n + l)Z„(cos y)d<p
^TT Jo 71=

the angle 7 being here determined, as in § 68, through the following relations:

a = cos 6', a -\- t = cos 6, cos 7 = cos 6 cos 6' + sin 6 sin 6' cos ((p — (p'),

it being understood that cp' is assigned any fixed value (0 < ^' < 27r) independent

of e.

Thus we may write

(168) <l>(n, «, = ^f^ Sn'{y)dcp,

where *„'(7) is defined as in (166).

Now, when t is such that — € ^ < ^ e (as occurs in relation (II) of the general

theorem of § 52) the corresponding values of 7 pertaining to the neighborhood

" Cf. Fej6r, I. c, p. 107.
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of the (fixed) point {6', (p') lie in an interval of the form ^ 7 ^ 77 where 77

vanishes with e. Thus, while formula (168) is general, holding for all values of

a and t with which we are concerned in applying the theorem of § 52 to the

present development, we are unable to determine whether relation (II)' of the

same theorem is here satisfied until more than is given by (177) is known of

the behavior of Sn'i'^) for large values of n. A critical study of Sn'{y) for 0^7
^ € is here needed and such study has apparently not yet been made.

Again, it cannot be argued from (167) and (168) that relation (III) of § 51

is here satisfied by ^{n, a, t) (cf. remark (2), § 56). This relation, however, is

seen to be satisfied if we confine ourselves to the intervals — 1 — a+^^<
^ — 6, e^i^l — a — ^(^>0) instead of — 1 — a^^^ — e, e^i^l — a,

but this is nothing more than can be at once inferred from the properties

already pointed out in § 68 regarding the present function <p{n, a, t). It may

be noted that if we could show that Sn{y) when considered for all values of n

and for values of 7 within the interval tt — e ^ 7 = tt remains less than a con-

stant (dependent only upon e) the function $(n, a, t) would come to completely

satisfy relation (III) as a result of (167) and (168). That such is true of Sniy)

seems probable.

The conclusion from these remarks respecting summability (r = 1) at an

internal point x(— l<a;<l)is therefore purely negative, except naturally

that such summability will necessarily be present^^ under the conditions for

convergence (r = 0) as given in the theorem of the preceding §.^^

Turning to a consideration of the summability (r = 1) of the series (164)

when .T = — 1 or .T = 1, we see upon reference to the results obtained for

ipin, — 1, t) and (p{n, 1, t) in § 68 that relations (I)a, (II)a, (1)6 and (II)b of § 55

are satisfied by the present functions <J>(n, — 1, t) and ^{n, 1, t) (regarded as

functions of the type (p there indicated) except that doubt exists in the case

of (I)a and (1)6 when t belongs to the respective intervals 2 — ^ ^ t ^ 2,

— 2^/^ — 2 + ^(^>0). In other words, nothing more can be said of

^(n, — 1, t) and ^{n, 1, t) than was said of (p{n, — 1, t) and (p{n, 1, t) in § 68.

This, however, is not the case in dealing with relations (Ill)a and (III)^.

Thus, in (III) 6 we have to consider the expression

$(n, 1, t) =
^^qj^

[<p(n, 1, + <p{n - 1,. 1, + • • • + <p{0, 1, /)],

where
n

<p{n, 1, = ^ E {2?i + l).Y„(cos 6) = ^^Sn{d).

We may therefore write

(169) ^{n, 1, = Wi^)>
=2 Cf. § 44.

33 Cf. Chapman, Quart. Journ. Math., Vol. 43 (1911), p. 51. For summability (;• =1)
Chapman places no restrictions upon/(x) at the extremities of the interval (— 1 < x < 1) other

than those for the whole interval.
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SO that upon introducing (167) we see that (III)^ is here satisfied for all values

of t in the interval — 2+^^t^ — e. For the remaining values of t with

which (111)6 is concerned, i. e., — 2 ^ t ^ — 2 + ^, doubt exists.

Likewise, relation (Ill)a is seen to be satisfied by $(n, — 1, t) except possibly

for values of t in the interval 2 — ^ ^ t ^ 2.

From the general theorem of § 52 together with the remarks in § 56 and the

investigations already made in § 68 of the last two of the integrals (162) we

reach the following

Theorem IL If the function f{x) of the real variable x satisfies conditions

(a), (b) and (c) of the Theorem I (§ 68) then the series (164) ^vhen considered for

the values a* = =b 1 will be summable (r = 1) to the respective limits /(I — 0),

/(- 1 + 0).

70. The difficulties which present themselves in the study of the summability,

r = 1, of the series (164) disappear in large measure when we consider the same

problem with r = 2. This fact was first pointed out by Fejer^^ who confined

himself, however, to functions f(x) having somewhat greater limitations than we

shall here find necessary in view of the general theorems of § 52. In what

follows we shall make use without further remark of the following two preliminary

results which may be found established on pages 81-87 of Fejer's original memoir.

" Having defined Sniy) and Sniy) as in (165) and (166), if we place^^

(170) sn'\7) = :;^W^y) + ^i'(t) + • • • + ^/(t)]

then

"(1) Whatever the values of n and 7 (0 < 7 < tt), Sn"{y) is never negative.

"(2) For values of 7 such that € ^ 7 ^ tt, € being arbitrarily small but > 0,

the expression Sn"{y) converges {n = co) uniformly to zero."

These results being premised, we shall now endeavor to apply the general

theorem of § 52 to the present development.

Just as we found the formula (168) for the function $(w, a, t) arising in the

study of the summability, r = 1, so it appears that if we represent by xl/{n, a, t)

the corresponding function which arises when r = 2, we shall have

(171) Hn,a,t) =^f Sn"iy)d<p,

where Sn"{y) is given by (170). Whence, upon using result (1) above, we see

that

I \^{n, a, t)\dt = — I \p(n, a, t)dt.

Thus, in view of the fact that the function (pin, a, t) (cf. (144)) and hence

M Cf. Math. Annalen, Vol. 67 (1909), pp. 76-109.

'^ Thus, 8/(7) comes to represent Holder's second mean for the series (164).
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\p{n, a, t) satisfies relation (II) of the theorem of § 51 (as shown in § 68) it follows

that the present function yp{n, a, t) satisfies relation (II)' of § 52.

Moreover, if we avail ourselves of result (2) above, it appears from (171) that

\p{n, a, t), when regarded as one of the functions of the type (p{n, a, t) of § 51,

satisfies relation (III) of the same §.

It remains but to note that xl/{n, a, t), when considered as one of the functions

(p{n, a, t) of § 51 satisfies relation (I) of that §, as a result of our analysis in § 68

in order to see that the conditions for the use of the general theorem of § 51 are

here all satisfied.

As regards the summability (r = 2) of the series (164) when cc = ± 1, it is

easily seen that \p{n, 1, t) and ^(w, — 1, t) satisfy respectively all the conditions

demanded by the general theorems VII and VIII of § 55. Thus, upon referring

to (157) and recalling that 7n(cos B) = Zn+i(cos 6) + A^n(cos d), we have but

to make use of result (2) above to see that yp{n, 1, t) satisfies relation (I) 6 (a = — 1,

h= l,G2=l) of Theorem VI (§ 55). Relation (11)^' of Theorem VIII (§ 55)

is also satisfied, as follows from the fact established in § 68 that ^p{n, 1, t) satis-

fies (11)6, Theorem VI (§ 55), while from result (1) above, we may write

XI)
y^O

\xP{n, l,t)\dt= - 1 xP{n, \,t)dt.

Finally, it follows from (169) that ^{n, 1, /) = lsn"{d) so that by applying result

(2) above we see that yp{n, 1, t) satisfies relation (111)6, Theorem VI (§ 55).

Upon noting the corresponding results concerning i/'(n, — 1, and applying

the Theorems of § 55 we reach in summary the following

Theorem III. If f(x) be any function which, when considered throughout the

interval (— 1, 1), satisfies conditions (A) and (B) of Theorem I (§ 51) then the series

(164) will be summable (r = 2) at any point x {— I < x < 1) for which the limits

f{x — 0), f{x + 0) exist and the sum loill be

i[/(.T-0)+/(.f +())].

Moreover, the summability ivill be uniform (§ 45) to the limit /(.r) throughout

any interval (a', b') such that — I < a' < b' < 1 provided that at all points within

(a', b') inclusive of the end points the function f{x) is continuous.

Under the same conditions {A), (B) the series lohen considered for the values

X — — \ and X = 1 will be summable (r = 2) to the respective limits /(— 1 + 0),

/(I — 0) provided only that these limits exist.
^^

^^ Interesting results have been obtained by Plancherel {Rend, del Cir. Mat. di Palermo,

Vol. 33 (1912), pp. 41-66) relative to the summability of the Legendre developments when,

instead of adopting the Holder definition of sum, one employs that of De la Vall6e Poussin (see

footnote, p. 77).



APPEiNDIX

1. Proof of statement (I), § 46. It is desirable for the purpose to establish the following two

lemmas:

Lemma I. If a and b are any two real numbers such that either — 7r + e^6<a^ — e

or e^a < b ^ w — e, e being an arbitrarily small positive quantity, and if k is a positive quantity

which may increase indefinitely according to any law whatever, then

(1) Iim / —. - at = 0.
i=oo*^« sm t

and the limit is approached uniformly for all the indicated values of a and b.

In order to establish this, let us suppose first that a and b are positive and divide the cases

which may then arise into three sets as follows:

(a)a<b^|; {b)a<^<b; (c)|^a<6.

In (o) we have merelj'^ to note that as t varies from a to 6 the function 1/sin t is always posi-

tive and continually decreasing so that we maj'^ apply the second law of the mean for integrals

and write

f'^dt = J- Tsin ktdt = -X r cosfeg-cosA-n
•^ « sm t sm a »'

«

sm a L k J

where J is a certain quantity lying between a and b. Hence, in (a) we shall have

(2) 1/^^^^
•^ a sm i

"^ sin kt ,. ^ 2 ^ 2

k sin a"^ k sin e
'

from which the indicated result becomes evident.

In (b) we write

(3) f'^'dt = r^-'^dt + f'^dt,^ « sm < •^'f sm i •^n-/2smf

where the first integral of the second member falls in group (a), wliile the last one, after making
the substitution t = w — t', may be written

/'"•/2 sin kJTT - t)

J n-b sin t

dt.

In this integral as t varies from tt — 6 to 7r/2 the function 1/sin t is always positive and continually

decreasing so that we may again apply the second law of the mean and write

jW2sinfcU-0,, ^ in . _ ^ _!_[ COS kb- COS k(.- 01
•'ir-ft sm t smo»'T-6 sm 6 L k J'

where n- — 6 < | < 7r/2.

WTience,

I

C"!^ sin k{w - t) ,\ ^ 2
|*'t-6 sm t

I
K sm e

after which the indicated result becomes evident as before.

In (c) we have, after making the substitution t — w — t',

r'j^dt=r;'^^^xp^dt,^a sm t J n-i) sm t

where c^tt — 6<7r — a^ 7r/2. Hence, proceeding as in case (a) we may write (2).

178
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Upon noting that the absolute value of the expression (1) remains unchanged when — a and
— h are substituted for a and b respectively, the Lemma thus becomes completely established.

Lemma II. If k be a positive quantity increasing according to any law whatever and if b be a

constant {independent of k) and such that 0<e<6<ir — e, e being an arbitrarily small positive

quantity, then

lim r'^dt=i,^
A;=«''o smt 2'

and the limit is approached uniformly for all the indicated values of b.

In order to prove this let us indicate by k' the first odd number equal to or greater than k

and let us place k = k' — y so that ^ 7 ^ 2.

We may then write

C'^dt = r^j^dt+f'^dt,
«^o sm t 'JO smt 'J e sm t

in which the last term, by reason of Lemma I, approaches uniformly the limit zero as A; = 00.

Also, we may write

r^ sin kt _ r^ sin jk' — y)t , _ P^ sin k't cos yt _ p cos k't sin yl ,

•^0 sin i ~ •^o sin i
~ Jo sin i '^ sin i

'

and by reason of the general formula /(5) = /(O) + 5/'(05); < 5 < 1, we may place

cos yt = 1 — yt sin yit

where 0^71^7 < 2 and hence

(4) f'^^^dt = r^^^^^dt - ril^^il^yAdt - p <^os k't sin yt
^^

^ ' •'0 sin i ^'o sm

«

Jo sm i •'o sm <

Of the three integrals last appearing on the right, the first may be written in the form

^ ' \Jo Je / sm< 2 Je smf '

since, if w be the integer such that k' = 2n + 1, we have

r'r/2sinfc'i
,, f'^fi , ^ n r\A, -^

\ —.—7- dt = ] \
\ -\- % coa2nt \dt = -^.

Jo sm( Jo L n=i J 2

Upon applying Lenamal to the last integral of (5) it thus appears that the integral of (4) in

question approaches the limit 7r/2 as A; = w

.

As regards the last two integrals of (4), it is at once evident that each of these may be made

arbitrarily small in absolute value with e and with this the proof of the Lemma becomes complete.

The proof of (I) of § 46 may now be made as follows:

We may write
. 2n + 1

/o^(n,Od< = -^(X"Vrj ^ dt
. t

sm-

'-«/2sin (2n + 1)< ,, 1 C'l^ sin (2n + l)t

~ V '^(12 sint TT •'0 sin t

dt

and when — 27r + e<<<— ewe have — ir + e/2 < </2 < — e/2 so that the first term here

appearing in the last member approaches uniformly the limit zero when n = <», as appears

from Lemma L The last term of the same member, however, approaches the limit — ^ as follows

from Lemma IL

Siuularly, when e < t < 2Tr — e the desired result follows directly from Lemmas I and II

upon writing

1 Cf. Dim, Serie di Fourier, etc., § 19.
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.2/1 + 1
^

1 f'/2 sin (2n + !)<,, ,
1 f'l^ sin i2n + l)tr < A^< w r , r^ N 2 \ , 1

f/''
sm(2n+i)< 1 r

sin t

dt.

sin-

2. Proof 0/ statement (II) 0/ § 46. We first establish the following Lemma:

Lemma III. If k is a positive quantity which may increase indefinitely according to any law

whatever we may write^for any value however great of k and for any value of t such that — 7r/2 ^ t^ 7r/2

:

sinfci

\Jo sin t

dt\ < w.

In fact, considering that A; has any particular value among those which it may take and

considering first the cases in which t is positive, we observe that since the function sin kt vanishes

by changing sign at the points ir/k, 2irlk, Sir/k, • • •, while the integral

C sm kt ,^

(6) /„ -^—r dt^^ ^0 sm t

is positive from < = Oto^ = tt/A;, this integral has maximum values at the points tt/A:, 3 tt/A;, 5 tt/Zc, •••

and minimum values at the points 2ir/k, 4:ir/k, • • •.

Moreover, the greatest of these maximum values is

(7) Jo •siET'^''

for we may show as follows that the difference between any maximum value and the next suc-

ceeding one is positive:

Let

(2s + l)x , (2s + 3)7r / n 1 n o ^ (2s + 3)7r _. 7r\
tri = 5^—^-^ and (T2 = ^ j^ \^s =0,1,2,3, • and ^-^ < -

j

be any two successive points belonging to the set tr/k, Zwjk, 5-n-/k, • • •. The difference between

the corresponding maximum values of the integral in question is

»*<^2 sin t „— at =/ p. _ p\ sjnkt^^^_ p sin_fc<^^ ^ _ 1 r^-r

\Jo Jo ) sin f ^''1 sm < A; I

_ 1 ^2.^2). Sinj
^

1 ^(2.+2). _^i__
^^ ^ _ 1 /^2.+2).

g.^ ^ r 1 1
1 ^^_

k \ . t k \ .f + x k \ \ • ^ .« + ir

f sm r / sm

—

-,
— /„ .s I

sm r sm —;— I

t>'(2«+l)7r k »/(2.s+l)7r k •^ 25+1 ,r L A; fc J

In the last integral here appearing the factor sin i is negative (or zero) for all the values of t be-

tween (2s + \)ir and (2s + 2)ir and since, for the same values of t, we have

A-
^ k = 2 '

the factor appearing in square brackets in the last integral is positive when

(2s + l)7r<<^(2s -1-2)7r.

In like manner it appears that the least of the minimum values of (6) is

J*2T/*sin_fc< ,

sin t

and that this value is positive together with all values of the integral (6) when < i ^ 27r/A;.

Thus, for all values of t such that < i ^ 7r/2 the integral (6) is positive and in summary

we may say that the greatest absolute value of (6) when ^ i ^ 7r/2 is given by (7). But

2 Cf. DiNi, 1. c, § 18.
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Bin kh
ktiJ*"'/*sinfc; ,, sin kit r^l^,, kh r. ^ . ^ tt

—.—7 dt = —.—7-
/ at = T —.—- ; < <i < 7"

sin t sin ti Jo sin ti k

tx

and since for such values of <i this expression is < 1 the Lemma now follows provided t ^ 0.

In order to prove it also for the cases in which i < we need but to note that

X
'—'sm kt ,\ r'sin kt

—.—- dt\ =
\

I —.—

-

sm t «^ sm t

dt

By use of Lemma III the proof of (II), § 46, is immediate since we have

2n + 1

^'r- sin {2n + l)t

X ^^"' ') dt

/^'sii

«y

t

. t

sm-
dt = - r''

Sin t

dt < 1.

A possible choice of the constant A of (II) is therefore A = 1.

3. Proof of Statement (II)', § 47. We shall here establish the following general lemma:

Lemma IV. If k = no. -\- ^ where n takes only positive integral values and a and 13 are any

two constants (independent of n) of which a > 0, then, corresponding to any e > such that t < 7r/2,

e < 7r/a, we shall have for all values of n sufficiently large

(8)
I C \ t sin kt— I 2
n«^-€ n=o sin t

dt <g,

where g is a certain constant independent of both n and e.

Since
sin {— kt) _ sin kt

sin (— sin t
'

it will evidently suffice to prove the lemma for the expression

2. sin kt
(9)

instead of (8).

Now, we have

nJo n==0 sin t

\dt

sin kt 1

sin I sm t

so that by application of the well known formulae

sin nat cos ^t + cos nat sin ^t\,

(10) 2 sin nx
n=0

sin— sin (n + 1)
2

(11)

we obtain

(12)

where

% cos nxl =
n=0

71X . / ,
- ^ X

cos "2- sin (n + 1)
2

sm^

- C
I

2 -°4' \dt<- r Un, t)di + l£ Mn, t)dt,

v^i
=

n=0

nat

sin i

. (w + 1)q!(
sin-!^ Ti.

at
^2 =

(n + l)a/
sm 2—

sin t

sin 0t

. at
sin -r
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Now, for the given value of e we maj^ take n so large that

and write

(13)

Now, when

we may write

(n + l)a

'7r/(n+l)a

< e

^ Jo J7r/(»+l)a

. nat

sin t

<t<

. nat
sin—T-

(?i + l)a ^ * ^ 2

/ . nat

'

na I 2

t nat
~2~

Tia TT _ Trna

^T* 2
~"^

and in like manner

(n + l)at

(14)
a/

^^(nj_l)a^

<(» + ^)
(n + i)«^

<(^ + i)i; o<^<(;rTI)^'

Thus it appears that the first term on the right in (13) is less than (7r'?i/8). Again, the second

term on the right in (13) may be put into the form

2 p
a " f/Ci+ l)a

nat . {n -\r l)at\
sm-^ sm

\ sm i /

2 dt

. at t^'

^^°2/
which is less than

Thus we have

2 r^ flY^^Ir in ^ J[l
aJrrKn+l)a\2) t^

= 2
^'^ ^ ^ ^ 2ea'

nJo ^'^''-¥+2+2^;^'

from which we see that the first term on the right in (12) has the property indicated of (8). Like-

wise, the same is seen to be true of the second term on the right in (12) with which the proof

becomes complete.

The proof of (II)' of § 47 follows by considering the special case in which a = 1, j3 = f.

4. Lemma V. With k defined as in Lemma IV we have

(15)
1 /»€

I

n
I

lim - J_ 2 cos kl \dt=0,
n=oo f^ *

I n=0 I

where e is any positive constant such that e < 1, e < w/a.

As in the study of (8) it will here suffice to prove the lemma for the expression obtained

from (15) by replacing the — e of the lower limit of integration by 0.

Now, we have
cos kt = cos nat cos fit — sin nat sin fit,

so that upon using formulae (10) and (11) we obtain

-I \
•% coskt\dt<- /„ Hdt,

where
. (n + l)at

H =
at
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For the given value of e we may take n so large that

< e
in + l)a

and write

(16) rHdt= r""'-'"'Hdt+r Hdt.
^ ' Jo Jo Jjr/(n+l)a

From (14) it appears that the first term here appearing on the right is less than K^l2a.

Again, the second term on the right in (16) may be put into the form

sm-
nat I 2 \dt

which is less than

Thus we have

a«'rr/(n+l)a 2 I . at t
'

2p /^\dt ^^ (n + l)ea

aJ7r/(«+l)a \2jt a ^ TT

2 r^ „ ,, ^ 7r2 2 - (n + l)ea
- /„ Hdt < log ^

,

from which the truth of the lemma becomes evident.
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